Computational Model of Motor Planning for Virtual Creatures: a Biologically Inspired Model

被引:3
|
作者
Lopez, S. [1 ]
Cervantes, J. A. [1 ]
Robles, F. A. [2 ]
Ramos, F. [3 ]
机构
[1] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, CINVESTAV, Unidad Guadalajara, Guadalajara, Jalisco, Mexico
[2] Univ Guadalajara, Ctr Univ Norte, Guadalajara, Jalisco, Mexico
[3] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, CINVESTAV, Guadalajara, Jalisco, Mexico
关键词
Cognitive systems; motor planning; autonomous agents; virtual reality; DORSOLATERAL PREFRONTAL CORTEX; POSTERIOR PARIETAL CORTEX; ORBITOFRONTAL CORTEX; ONLINE CONTROL; BASAL GANGLIA; INFORMATION; NETWORK; LONDON; REWARD; TOWER;
D O I
10.1109/TLA.2015.7040622
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The development of computational models that emulate human cognitive functions is challenging. Nevertheless, we think that cognitive systems will allow to correct several problems of behavior like credibility, or wrong behavior that occur in some areas such as: virtual reality, artificial life, autonomous agents, humanoid robots, human-computer interaction. In this paper we propose a biological inspired computational model for motor planning applied to virtual creatures. We present the results of a case study taken from Neurosciences to validate our model. Also, the flow of information in our model emulating the flow of information of the human brain is presented.
引用
收藏
页码:10 / 17
页数:8
相关论文
共 50 条
  • [31] Tropical cyclone intensity forecasting in the Bay of Bengal using a biologically inspired computational model
    Roy, Chandan
    Rahman, Md. Rejaur
    Ghosh, Manoj Kumer
    Biswas, Shoumen
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2024, 10 (01) : 523 - 537
  • [32] Biologically Inspired Visual Odometry Based on the Computational Model of Grid Cells for Mobile Robots
    Lu, Huimin
    Xiao, Junhao
    Zhang, Lilian
    Yang, Shaowu
    Zell, Andreas
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2016, : 595 - 601
  • [33] A Novel Biologically Inspired Visual Saliency Model
    Zhao, Jingjing
    Sun, Shujin
    Liu, Xingtong
    Sun, Jixiang
    Yang, Afeng
    COGNITIVE COMPUTATION, 2014, 6 (04) : 841 - 848
  • [34] Biologically Inspired Model for Computer Virus Detection
    Zhang, Yu
    Li, Yana
    Chen, Le
    2012 7TH INTERNATIONAL CONFERENCE ON SYSTEM OF SYSTEMS ENGINEERING (SOSE), 2012, : 66 - 69
  • [35] Analysis of Biologically Inspired Model for Object Recognition
    Arivazhagan, S.
    Shebiah, R. Newlin
    Sophia, P.
    Nivetha, A.
    2013 INTERNATIONAL CONFERENCE ON RECENT TRENDS IN INFORMATION TECHNOLOGY (ICRTIT), 2013, : 137 - 141
  • [36] Biologically inspired model of adaptive searching behavior
    Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavskaya obl., Russia
    不详
    Opt. Mem. Neural Netw. (Inf. Opt.), 2008, 1 (69-74): : 69 - 74
  • [37] A Novel Biologically Inspired Visual Saliency Model
    Jingjing Zhao
    Shujin Sun
    Xingtong Liu
    Jixiang Sun
    Afeng Yang
    Cognitive Computation, 2014, 6 : 841 - 848
  • [38] A Proposed Biologically Inspired Model for Object Recognition
    Al-Absi, Hamada R. H.
    Abdullah, Azween B.
    VISUAL INFORMATICS: BRIDGING RESEARCH AND PRACTICE, 2009, 5857 : 213 - 222
  • [39] Biologically inspired recognition model with extension fields
    Kalocsai, P
    Biederman, I
    PROCEEDINGS OF THE 4TH JOINT SYMPOSIUM ON NEURAL COMPUTATION, VOL 7, 1997, : 116 - 123
  • [40] Biologically inspired recognition model with extension fields
    Kalocsai, P
    INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL II, 1997, : 450 - 453