Asymptotic Properties of Bernstein-Durrmeyer Operators

被引:1
|
作者
Xu, Xiao-Wei [1 ]
Zeng, Xiao-Ming [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Bernstein-Durrmeyer operators; Szasz-Durrmeyer operator; Operator semigroups; Rates of convergence; Asymptotic expansion; APPROXIMATION; SEMIGROUPS; SZASZ;
D O I
10.1007/s00025-015-0482-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is known that Szasz-Durrmeyer operator is the limit, in an appropriate sense, of Bernstein-Durrmeyer operators. In this paper, we adopt a new technique that comes from the representation of operator semigroups to study the approximation issue as mentioned above. We provide some new results on approximating Szasz-Durrmeyer operator by Bernstein-Durrmeyer operators. Our results improve the corresponding results of Adell and De La Cal (Comput Math Appl 30:1-14, 1995).
引用
收藏
页码:345 / 357
页数:13
相关论文
共 50 条
  • [21] Approximation by Certain Operators Linking the α-Bernstein and the Genuine α-Bernstein-Durrmeyer Operators
    Acu, Ana Maria
    Radu, Voichita Adriana
    MATHEMATICAL ANALYSIS I: APPROXIMATION THEORY, ICRAPAM 2018, 2020, 306 : 77 - 88
  • [22] Bezier variant of the Bernstein-Durrmeyer type operators
    Acar, Tuncer
    Agrawal, P. N.
    Neer, Trapti
    RESULTS IN MATHEMATICS, 2017, 72 (03) : 1341 - 1358
  • [23] APPROXIMATION BY A CLASS OF AIODIFIED BERNSTEIN-DURRMEYER OPERATORS
    Bingzheng Li Zhejiang University
    ApproximationTheoryandItsApplications, 1994, (03) : 32 - 44
  • [24] LOCAL SMOOTHNESS OF FUNCTIONS AND BERNSTEIN-DURRMEYER OPERATORS
    GONSKA, HH
    ZHOU, DX
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 30 (3-6) : 83 - 101
  • [25] ON APPROXIMATION OF BERNSTEIN-DURRMEYER OPERATORS IN MOVABLE INTERVAL
    Wang, Fengfeng
    Yu, Dansheng
    Zhang, Bin
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2022, 5 (04): : 331 - 342
  • [26] Local approximation by a variant of Bernstein-Durrmeyer operators
    Abel, Ulrich
    Gupta, Vijay
    Mohapatra, Ram N.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (11) : 3372 - 3381
  • [27] Pointwise approximation for a type of Bernstein-Durrmeyer operators
    Liu, Guofen
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [28] Convergence of the Bernstein-Durrmeyer Operators in Variation Seminorm
    Karsli, Harun
    Yilik, Ozlem Oksuzer
    Yesildal, Fatma Tasdelen
    RESULTS IN MATHEMATICS, 2017, 72 (03) : 1257 - 1270
  • [29] Pointwise approximation for a type of Bernstein-Durrmeyer operators
    Guofen Liu
    Journal of Inequalities and Applications, 2014
  • [30] Two families of Bernstein-Durrmeyer type operators
    Cardenas-Morales, Daniel
    Gupta, Vijay
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 248 : 342 - 353