Engineered Nanostructures for High Thermal Conductivity Substrates

被引:0
|
作者
Varanasi, Kripa K. [1 ]
Chamarthy, Pramod [2 ]
Chauhan, Shakti [2 ]
de Bock, Peter [2 ]
Deng, Tao [2 ]
Kulkarni, Ambarish [2 ]
Mandrusiak, Gary [2 ]
Rush, Brian [2 ]
Russ, Boris [2 ]
Denault, Lauraine [2 ]
Weaver, Stanton [2 ]
Gerner, Frank [3 ]
Leland, Quinn [4 ]
Yerkes, Kirk [4 ]
机构
[1] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] GE Global Res Ctr, Niskayuna, NY USA
[3] Univ Cincinnati, Cincinnati, OH USA
[4] Air Force Res Lab, Dayton, OH USA
关键词
heat pipes; wicking; capillarity; fluorescence imaging; superhydrophobic; superhydrophilic surfaces;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In the DARPA Thermal Ground Plane (TGP) prograni[1],we are developing a new thermal technology that will enable a monumental thermal technological leap to ail entirely new class of electronics, particularly electronics for use in high-tech military systems. The proposed TGP is a planar, thermal expansion matched heat spreader that is capable of moving heat from multiple chips to a remote thermal sink. DARPA's final goals require the TGP to have ail effective conductivity of 20,000 W/mK, operate at 20g, with minimal fluid loss of less than 0.1%/year and in a large ultra-thin planar package of 10cmx20cm, no thicker than I mill. The proposed TGP is based oil a heat pipe architecture[2], whereby the enhanced transport of heat is made possible by applying nanoenigineered surfaces to the evaporator, wick, and condenser surfaces. Ultra-low thermal resistances are engineered using superhydrophilic and superhydrophobic nanostructures oil the interior surfaces of the TGP envelope. The final TGP design will be easily integrated into existing printed circuit board manufacturing technology. In this paper, we present the transport design, fabrication and packaging techniques, and finally a novel fluorescence imaging technique to visualize the capillary flow in these nanostructured wicks.
引用
收藏
页码:505 / +
页数:2
相关论文
共 50 条
  • [21] Thermal conductivity of engineered bamboo composites
    Shah, Darshil U.
    Bock, Maximilian C. D.
    Mulligan, Helen
    Ramage, Michael H.
    JOURNAL OF MATERIALS SCIENCE, 2016, 51 (06) : 2991 - 3002
  • [22] Thermal conductivity of engineered bamboo composites
    Darshil U. Shah
    Maximilian C. D. Bock
    Helen Mulligan
    Michael H. Ramage
    Journal of Materials Science, 2016, 51 : 2991 - 3002
  • [23] AN ISSUE IN THERMAL MANAGEMENT - METALLIZING HIGH THERMAL-CONDUCTIVITY CERAMIC SUBSTRATES IN MICROELECTRONICS
    WESTWOOD, AD
    NOTIS, MR
    JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY, 1991, 43 (06): : 10 - 15
  • [24] HIGH THERMAL-CONDUCTIVITY ALUMINUM NITRIDE CERAMIC SUBSTRATES AND PACKAGES
    MIYASHIRO, F
    IWASE, N
    TSUGE, A
    UENO, F
    NAKAHASHI, M
    TAKAHASHI, T
    IEEE TRANSACTIONS ON COMPONENTS HYBRIDS AND MANUFACTURING TECHNOLOGY, 1990, 13 (02): : 313 - 319
  • [25] High thermal conductivity ceramic layered system substrates for microelectronic applications
    J. Ma
    H. H. Hng
    Journal of Materials Science: Materials in Electronics, 2002, 13 : 461 - 464
  • [26] High thermal conductivity ceramic layered system substrates for microelectronic applications
    Ma, J
    Hng, HH
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2002, 13 (08) : 461 - 464
  • [27] Reducing thermal conductivity of crystalline solids at high temperature using embedded nanostructures
    Kim, Woochul
    Singer, Suzanne L.
    Majumdar, Arun
    Zide, Joshua M. O.
    Klenov, Dmitri
    Gossard, Arthur C.
    Stemmer, Susanne
    NANO LETTERS, 2008, 8 (07) : 2097 - 2099
  • [28] An analytical model for the thermal conductivity of silicon nanostructures
    Chantrenne, P
    Barrat, JL
    Blase, X
    Gale, JD
    JOURNAL OF APPLIED PHYSICS, 2005, 97 (10)
  • [29] Thermal conductivity anisotropy in nanostructures and nanostructured materials
    Termentzidis, Konstantinos
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (09)
  • [30] Thermal conductivity of BN-C nanostructures
    Kinaci, Alper
    Haskins, Justin B.
    Sevik, Cem
    Cagin, Tahir
    PHYSICAL REVIEW B, 2012, 86 (11):