Bubble merger in initial Richtmyer-Meshkov instability on inverse-chevron interface

被引:15
|
作者
Guo, Xu [1 ]
Zhai, Zhigang [1 ]
Si, Ting [1 ]
Luo, Xisheng [1 ]
机构
[1] Univ Sci & Technol China, Dept Modern Mech, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
SINGLE-MODE; NONLINEAR EVOLUTION; ACCELERATION;
D O I
10.1103/PhysRevFluids.4.092001
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We report the shock tube experiments on Richtmyer-Meshkov instability to evaluate the bubble merger effect in initial stages. The initial interface is specially designed by alternatively arranging the major and minor inverse-chevron shapes with different amplitudes and wavelengths such that the bubble merger effect is highlighted. The results show that the major and minor shapes develop independently at very early stages, and after a short transient the bubble merger occurs. The bubble merger promotes the width growth of the major shape while it inhibits the width growth of the minor one. However, the bubble merger has a greater effect on the development of the minor shape than the major one. As the initial size difference between two shapes increases, the bubble merger occurs earlier, and the minor shape is affected more heavily. The developments of bubble front difference seem to experience two different linear stages before it enters a nonlinear stage, and collapse well in dimensionless form for different cases. As a result, the initial size difference has a limited effect on the bubble merger in the streamwise direction. The ratio of the major bubble diameter in spanwise direction to the bubble width increases with time, and does not reach a stable phase because the flow is far from the turbulent mixing region.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Richtmyer-Meshkov instability of a sinusoidal interface driven by a cylindrical shock
    Liu, L.
    Ding, J.
    Zhai, Z.
    Luo, X.
    SHOCK WAVES, 2019, 29 (02) : 263 - 271
  • [22] Measurements of mixing induced at a gas interface by the Richtmyer-Meshkov instability
    Ranjan, D
    Niederhaus, J
    Oakley, J
    Anderson, MH
    Greenough, J
    Bonazza, R
    Shock Waves, Vols 1 and 2, Proceedings, 2005, : 377 - 382
  • [24] On the problem of the Richtmyer-Meshkov instability suppression
    Aleshin, AN
    Lazareva, EV
    Sergeev, SV
    Zaitsev, SG
    DOKLADY AKADEMII NAUK, 1998, 363 (02) : 178 - 180
  • [25] RICHTMYER-MESHKOV INSTABILITY IN THE TURBULENT REGIME
    DIMONTE, G
    FRERKING, CE
    SCHNEIDER, M
    PHYSICAL REVIEW LETTERS, 1995, 74 (24) : 4855 - 4858
  • [26] QUANTITATIVE THEORY OF RICHTMYER-MESHKOV INSTABILITY
    GROVE, JW
    HOLMES, R
    SHARP, DH
    YANG, Y
    ZHANG, Q
    PHYSICAL REVIEW LETTERS, 1993, 71 (21) : 3473 - 3476
  • [27] Richtmyer-Meshkov instability of arbitrary shapes
    Mikaelian, KO
    PHYSICS OF FLUIDS, 2005, 17 (03) : 034101 - 1
  • [28] Richtmyer-Meshkov instability with a rippled reshock
    Zhang, Yumeng
    Zhao, Yong
    Ding, Juchun
    Luo, Xisheng
    JOURNAL OF FLUID MECHANICS, 2023, 968
  • [29] Nonlinear evolution of the Richtmyer-Meshkov instability
    Herrmann, Marcus
    Moin, Parviz
    Abarzhi, Snezhana I.
    JOURNAL OF FLUID MECHANICS, 2008, 612 (311-338) : 311 - 338
  • [30] Numerical simulation of Richtmyer-Meshkov instability
    FU Dexun MA Yanwen ZHANG Linbo TIAN BaolinState Key Laboratory of Nonlinear Mechanics Institute of Mechanics Chinese Academy of Sciences Beijing China
    State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics Chinese Academy of Sciences Beijing China
    ScienceinChina,SerA., 2004, Ser.A.2004(S1) (S1) : 234 - 244