Testing bandwidth k for k-connected graphs

被引:0
|
作者
Engel, K [1 ]
Guttmann, S
机构
[1] Univ Rostock, Fachbereich Math, D-18051 Rostock, Germany
[2] Arvato Syst GmbH, D-33311 Gutersloh, Germany
关键词
bandwidth; bandwidth-k graph; k-connected graph; linear-time algorithm; linear layout; start sequence;
D O I
10.1137/S0895480199351148
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a linear-time algorithm to decide whether a given k-connected graph has bandwidth k, where k is a fixed positive integer. This improves the general O(n(k))-time-algorithm of Gurari and Sudborough, based on a dynamic programming approach of Saxe, for the recognition of bandwidth-k graphs on n vertices in the special case of connectivity k.
引用
收藏
页码:301 / 312
页数:12
相关论文
共 50 条
  • [31] ON THE CYCLABILITY OF K-CONNECTED (K+1)-REGULAR GRAPHS
    HOLTON, DA
    PLUMMER, MD
    ARS COMBINATORIA, 1987, 23 : 37 - 55
  • [32] ON THE BOUNDS OF LAPLACIAN EIGENVALUES OF k-CONNECTED GRAPHS
    Chen, Xiaodan
    Hou, Yaoping
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (03) : 701 - 712
  • [33] Edge bounds in nonhamiltonian k-connected graphs
    Byer, Owen D.
    Smeltzer, Deirdre L.
    DISCRETE MATHEMATICS, 2007, 307 (13) : 1572 - 1579
  • [34] Hamiltonicity of k-connected graphs with independent claws
    Shen, RQ
    Tian, F
    Wei, B
    ARS COMBINATORIA, 1997, 47 : 307 - 312
  • [35] Intersections of longest cycles in k-connected graphs
    Chen, GT
    Faudree, RJ
    Gould, RJ
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1998, 72 (01) : 143 - 149
  • [36] Contractible edges of k-connected graphs for k=4, 5
    Qin, Chengfu
    Guo, Xiaofeng
    ARS COMBINATORIA, 2010, 97 : 321 - 332
  • [37] Clique vectors of k-connected chordal graphs
    Goodarzi, Afshin
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2015, 132 : 188 - 193
  • [38] Contractible edges in minimally k-connected graphs
    Ando, Kiyoshi
    Kaneko, Atsushi
    Kawarabayashi, Ken-ichi
    DISCRETE MATHEMATICS, 2008, 308 (04) : 597 - 602
  • [39] Forbidden pairs for k-connected Hamiltonian graphs
    Chen, Guantao
    Egawa, Yoshimi
    Gould, Ronald J.
    Saito, Akira
    DISCRETE MATHEMATICS, 2012, 312 (05) : 938 - 942
  • [40] (s, m)-radius of k-connected graphs
    Li, Hao
    Li, Jianping
    DISCRETE MATHEMATICS, 2009, 309 (05) : 1163 - 1177