Trees with a large Laplacian eigenvalue multiplicity

被引:3
|
作者
Akbari, S. [1 ]
van Dam, E. R. [2 ]
Fakharan, M. H. [1 ]
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[2] Tilburg Univ, Dept Econometr & OR, Tilburg, Netherlands
基金
美国国家科学基金会;
关键词
Laplacian spectrum; Trees; Multiplicities of eigenvalues; ALGEBRAIC CONNECTIVITY;
D O I
10.1016/j.laa.2019.10.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the multiplicity of the Laplacian eigenvalues of trees. It is known that for trees, integer Laplacian eigenvalues larger than 1 are simple and also the multiplicity of Laplacian eigenvalue 1 has been well studied before. Here we consider the multiplicities of the other (non-integral) Laplacian eigenvalues. We give an upper bound and determine the trees of order n that have a multiplicity that is close to the upper bound n-3/2, and emphasize the particular role of the algebraic connectivity. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:262 / 273
页数:12
相关论文
共 50 条
  • [41] Multiplicity of Solutions on a Nonlinear Eigenvalue Problem for p(x)-Laplacian-like Operators
    M. Manuela Rodrigues
    Mediterranean Journal of Mathematics, 2012, 9 : 211 - 223
  • [42] A characterization of trees with eigenvalue multiplicity one less than their number of pendant vertices
    Wong, Dein
    Zhao, Jinxing
    Wang, Zhijun
    Zhang, Chi
    DISCRETE MATHEMATICS, 2024, 347 (04)
  • [43] Partial characterization of graphs having a single large Laplacian eigenvalue
    Emilio Allem, L.
    Cafure, Antonio
    Dratman, Ezequiel
    Grippo, Luciano N.
    Safe, Martin D.
    Trevisan, Vilmar
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (04):
  • [44] An effective Hamiltonian for the eigenvalue asymptotics of the Robin Laplacian with a large parameter
    Pankrashkin, Konstantin
    Popoff, Nicolas
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (04): : 615 - 650
  • [45] Full characterization of graphs having certain normalized Laplacian eigenvalue of multiplicity n-3
    Tian, Fenglei
    Wang, Yiju
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 630 : 69 - 83
  • [46] ON THE MULTIPLICITY OF THE EIGENVALUES OF THE LAPLACIAN
    BESSON, G
    LECTURE NOTES IN MATHEMATICS, 1988, 1339 : 32 - 53
  • [47] The trees with the second smallest normalized Laplacian eigenvalue at least 1-√3/2
    Tian, Xiaoguo
    Wang, Ligong
    DISCRETE APPLIED MATHEMATICS, 2017, 220 : 118 - 133
  • [48] Existence and Multiplicity of Solutions for a Steklov Eigenvalue Problem Involving The p(x)-Laplacian-like Operator
    Boukhsas, A.
    Karim, B.
    Zerouali, A.
    Chakrone, O.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42
  • [49] MULTIPLICITY AND EIGENVALUE INTERSECTING NONLINEARITIES
    RUF, B
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1989, 40 (05): : 774 - 779
  • [50] Optimal Stability and Eigenvalue Multiplicity
    Burke J.V.
    Lewis A.S.
    Overton M.L.
    Foundations of Computational Mathematics, 2001, 1 (2) : 205 - 225