ON THE JACQUET CONJECTURE ON THE LOCAL CONVERSE PROBLEM FOR p-ADIC GLN

被引:8
|
作者
Adrian, Moshe [1 ]
Liu, Baiying [2 ]
Stevens, Shaun [3 ]
Xu, Peng [4 ]
机构
[1] CUNY Queens Coll, Dept Math, Queens, NY 11367 USA
[2] Inst Adv Study, Sch Math, Einstein Dr, Princeton, NJ 08540 USA
[3] Univ E Anglia, Sch Math, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England
[4] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
来源
REPRESENTATION THEORY | 2016年 / 20卷
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
Local converse problem; special pairs of Whittaker functions; SUPERCUSPIDAL REPRESENTATIONS;
D O I
10.1090/ert/476
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on previous results of Jiang, Nien and the third-named author, we prove that any two minimax unitarizable supercuspidals of p-adic GL(N) that have the same depth and central character admit a special pair of Whittaker functions. As a corollary of our result, we prove Jacquet's conjecture on the local converse problem for GL(N), when N is prime.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [21] The local Langlands conjecture for GL(n) over a p-adic field, n<p
    Michael Harris
    Inventiones mathematicae, 1998, 134 : 177 - 210
  • [22] On the p-adic Beilinson conjecture and the equivariant Tamagawa number conjecture
    Nickel, Andreas
    SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (01):
  • [23] Arithmetic in the fundamental group of a p-adic curve. On the p-adic section conjecture for curves
    Pop, Florian
    Stix, Jakob
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 725 : 1 - 40
  • [24] On the p-adic Beilinson conjecture and the equivariant Tamagawa number conjecture
    Andreas Nickel
    Selecta Mathematica, 2022, 28
  • [25] Affine quiver Schur algebras and p-adic GLn
    Miemietz, Vanessa
    Stroppel, Catharina
    SELECTA MATHEMATICA-NEW SERIES, 2019, 25 (02):
  • [26] A p-adic supercongruence conjecture of van Hamme
    Mortenson, Eric
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (12) : 4321 - 4328
  • [27] On the p-adic Beilinson Conjecture for Number Fields
    Besser, A.
    Buckingham, P.
    de Jeu, R.
    Roblot, X. -F.
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2009, 5 (01) : 375 - 434
  • [28] THE p-ADIC DUFFIN-SCHAEFFER CONJECTURE
    Kristensen, Simon
    Laursen, M. A. T. H. I. A. S. LoKKEGAARD
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2023, 68 (01) : 113 - 126
  • [29] HAYMAN'S CONJECTURE IN A p-ADIC FIELD
    Ojeda, Jacqueline
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (09): : 2295 - 2313
  • [30] THE p-ADIC DUFFIN-SCHAEFFER CONJECTURE
    Department of Mathematics, Aarhus University, Ny Munkegade 118, Aarhus C
    DK-8000, Denmark
    arXiv, 2021,