MIRROR CURVE OF ORBIFOLD HURWITZ NUMBERS

被引:0
|
作者
Dumitrescu, Olivia [1 ,2 ]
Mulase, Motohico [3 ,4 ]
机构
[1] Univ N Carolina, 340 Phillips Hall,CB 3250, Chapel Hill, NC 27599 USA
[2] Romanian Acad, Simion Stoilow Inst Math, Calea Grivitei 21, Bucharest 010702, Romania
[3] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[4] Univ Tokyo, Kavli Inst Phys & Math Universe, Kashiwa, Chiba, Japan
关键词
topological recursion; ribbon graphs; Hurwitz numbers; mirror curves; RECURSION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Edge-contraction operations form an effective tool in various graph enumeration problems, such as counting Grothendieck's dessins d'enfants and simple and double Hurwitz numbers. These counting problems can be solved by a mechanism known as topological recursion, which is a mirror B-model corresponding to these counting problems. We show that for the case of orbifold Hurwitz numbers, the mirror objects, i.e., the spectral curve and the differential forms on it, are constructed solely from the edge-contraction operations of the counting problem in genus 0 and one marked point. This forms a parallelism with Gromov-Witten theory, where genus 0 Gromov-Witten invariants correspond to mirror B-model holomorphic geometry.
引用
收藏
页码:307 / 328
页数:22
相关论文
共 50 条
  • [21] Pruned double Hurwitz numbers
    Hahn, Marvin Anas
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (03):
  • [22] Tropical Open Hurwitz Numbers
    Bertrand, Benoit
    Brugalle, Erwan
    Mikhalkin, Grigory
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2011, 125 : 157 - 171
  • [23] Generating weighted Hurwitz numbers
    Bertola, M.
    Harnad, J.
    Runov, B.
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (01)
  • [24] Multispecies Weighted Hurwitz Numbers
    Harnad, J.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2015, 11
  • [25] A square root of Hurwitz numbers
    Lee, Junho
    MANUSCRIPTA MATHEMATICA, 2020, 162 (1-2) : 99 - 113
  • [26] Around spin Hurwitz numbers
    Mironov, A. D.
    Morozov, A.
    Natanzon, S. M.
    Orlov, A. Yu
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (05)
  • [27] Hurwitz numbers for real polynomials
    Itenberg, Ilia
    Zvonkine, Dimitri
    COMMENTARII MATHEMATICI HELVETICI, 2018, 93 (03) : 441 - 474
  • [28] Simple Hurwitz numbers of a disk
    Natanzon, S. M.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2010, 44 (01) : 36 - 47
  • [29] On Hurwitz numbers and Hedge integrals
    Ekedahl, T
    Lando, S
    Shapiro, M
    Vainshtein, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (12): : 1175 - 1180
  • [30] BKP and projective Hurwitz numbers
    Natanzon, Sergey M.
    Orlov, Aleksandr Yu.
    LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (06) : 1065 - 1109