MIRROR CURVE OF ORBIFOLD HURWITZ NUMBERS

被引:0
|
作者
Dumitrescu, Olivia [1 ,2 ]
Mulase, Motohico [3 ,4 ]
机构
[1] Univ N Carolina, 340 Phillips Hall,CB 3250, Chapel Hill, NC 27599 USA
[2] Romanian Acad, Simion Stoilow Inst Math, Calea Grivitei 21, Bucharest 010702, Romania
[3] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[4] Univ Tokyo, Kavli Inst Phys & Math Universe, Kashiwa, Chiba, Japan
关键词
topological recursion; ribbon graphs; Hurwitz numbers; mirror curves; RECURSION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Edge-contraction operations form an effective tool in various graph enumeration problems, such as counting Grothendieck's dessins d'enfants and simple and double Hurwitz numbers. These counting problems can be solved by a mechanism known as topological recursion, which is a mirror B-model corresponding to these counting problems. We show that for the case of orbifold Hurwitz numbers, the mirror objects, i.e., the spectral curve and the differential forms on it, are constructed solely from the edge-contraction operations of the counting problem in genus 0 and one marked point. This forms a parallelism with Gromov-Witten theory, where genus 0 Gromov-Witten invariants correspond to mirror B-model holomorphic geometry.
引用
收藏
页码:307 / 328
页数:22
相关论文
共 50 条
  • [1] MIRROR SYMMETRY FOR ORBIFOLD HURWITZ NUMBERS
    Bouchard, Vincent
    Hernandez Serrano, Daniel
    Liu, Xiaojun
    Mulase, Motohico
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2014, 98 (03) : 375 - 423
  • [2] Monotone Orbifold Hurwitz Numbers
    Do N.
    Karev M.
    Journal of Mathematical Sciences, 2017, 226 (5) : 568 - 587
  • [3] Orbifold Hurwitz numbers and Eynard-Orantin invariants
    Do, Norman
    Leigh, Oliver
    Norbury, Paul
    MATHEMATICAL RESEARCH LETTERS, 2016, 23 (05) : 1281 - 1327
  • [4] Polynomiality of orbifold Hurwitz numbers, spectral curve, and a new proof of the Johnson-Pandharipande-Tseng formula
    Dunin-Barkowski, P.
    Lewanski, D.
    Popolitov, A.
    Shadrin, S.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2015, 92 : 547 - 565
  • [5] Topological recursion and a quantum curve for monotone Hurwitz numbers
    Do, Norman
    Dyer, Alastair
    Mathews, Daniel V.
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 120 : 19 - 36
  • [6] Topological recursion for monotone orbifold Hurwitz numbers: a proof of the Do-Karev conjecture
    Kramer, Reinier
    Popolitov, Alexandr
    Shadrin, Sergey
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2022, 23 (02) : 809 - 827
  • [7] Quantum curves for simple Hurwitz numbers of an arbitrary base curve
    Liu, Xiaojun
    Mulase, Motohico
    Sorkin, Adam
    TOPOLOGICAL RECURSION AND ITS INFLUENCE IN ANALYSIS, GEOMETRY, AND TOPOLOGY, 2018, 100 : 533 - 549
  • [8] QUASI-POLYNOMIALITY OF MONOTONE ORBIFOLD HURWITZ NUMBERS AND GROTHENDIECK'S DESSINS D'ENFANTS
    Kramer, Reinier
    Lewanski, Danilo
    Shadrin, Sergey
    DOCUMENTA MATHEMATICA, 2019, 24 : 857 - 898
  • [9] The spectral curve and the Schrodinger equation of double Hurwitz numbers and higher spin structures
    Mulase, M.
    Shadrin, S.
    Spitz, L.
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2013, 7 (01) : 125 - 143
  • [10] NOTE ON HURWITZ NUMBERS
    RIEGER, GJ
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1977, 296 : 212 - 220