Cohomological finiteness conditions for elementary amenable groups

被引:31
|
作者
Kropholler, P. H. [1 ]
Martinez-Perez, C. [2 ]
Nucinkis, B. E. A. [3 ]
机构
[1] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
[2] Univ Zaragoza, Dept Math, E-50009 Zaragoza, Spain
[3] Univ Southampton, Sch Math, Southampton SO17 1BJ, Hants, England
关键词
SOLUBLE GROUPS; GEOMETRIC INVARIANT; HOMOLOGICAL DIMENSION; SOLVABLE GROUPS; FP-INFINITY; TORSION;
D O I
10.1515/CRELLE.2009.090
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that every elementary amenable group of type FP infinity admits a cocompact classifying space for proper actions.
引用
收藏
页码:49 / 62
页数:14
相关论文
共 50 条
  • [1] Elementary amenable groups of cohomological dimension 3
    Hillman, Jonathan A.
    JOURNAL OF GROUP THEORY, 2024, 27 (01) : 1 - 11
  • [2] Bredon cohomological finiteness conditions for generalisations of Thompson groups
    Martinez-Perez, Conchita
    Nucinkis, Brita E. A.
    GROUPS GEOMETRY AND DYNAMICS, 2013, 7 (04) : 931 - 959
  • [3] Cohomological finiteness conditions for Mackey and cohomological Mackey functors
    St John-Green, Simon
    JOURNAL OF ALGEBRA, 2014, 411 : 225 - 258
  • [4] Cohomological finiteness conditions in Bredon cohomology
    Kochloukova, D. H.
    Martinez-Perez, C.
    Nucinkis, B. E. A.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 : 124 - 136
  • [5] Chain conditions, elementary amenable groups, and descriptive set theory
    Wesolek, Phillip
    Williams, Jay
    GROUPS GEOMETRY AND DYNAMICS, 2017, 11 (02) : 649 - 684
  • [6] Elementary amenable groups are quasidiagonal
    Narutaka Ozawa
    Mikael Rørdam
    Yasuhiko Sato
    Geometric and Functional Analysis, 2015, 25 : 307 - 316
  • [7] Elementary amenable groups are quasidiagonal
    Ozawa, Narutaka
    Rordam, Mikael
    Sato, Yasuhiko
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2015, 25 (01) : 307 - 316
  • [8] Dimension of elementary amenable groups
    Bridson, Martin R.
    Kropholler, Peter H.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 699 : 217 - 243
  • [9] COHERENCE FOR ELEMENTARY AMENABLE GROUPS
    Hughes, Sam
    Kielak, Dawid
    Kropholler, Peter H.
    Leary, Ian J.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (03) : 977 - 986
  • [10] ELEMENTARY AMENABLE-GROUPS
    CHOU, C
    ILLINOIS JOURNAL OF MATHEMATICS, 1980, 24 (03) : 396 - 407