Crank-Nicolson Method of a Two-Grid Finite Volume Element Algorithm for Nonlinear Parabolic Equations

被引:8
|
作者
Gong, Yunjie [1 ]
Chen, Chuanjun [1 ]
Lou, Yuzhi [1 ]
Xue, Guanyu [1 ]
机构
[1] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
基金
中国国家自然科学基金;
关键词
Crank-Nicolson method; two-grid algorithm; finite volume element method; error estimates; nonlinear parabolic equations; GALERKIN APPROXIMATION; DIFFUSION-EQUATIONS; SCHEME; ACCURACY;
D O I
10.4208/eajam.090820.311220
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A two-grid finite volume element algorithm based on Crank-Nicolson scheme for nonlinear parabolic equations is proposed. In this method, the nonlinear problem is solved on a coarse grid of size H and a linear problem is considered on a fine grid of size h by using the coarse-grid solution and one Newton iteration. This helps to improve the computing efficiency while keeping the accuracy. It is proved that the two-grid method can achieve asymptotically optimal error estimates in spaces and second order accuracy in time. Numerical results are consistent with the theoretical findings.
引用
收藏
页码:540 / 559
页数:20
相关论文
共 50 条
  • [31] A reduced-dimension extrapolation two-grid Crank-Nicolson finite element method of unknown solution coefficient vectors for spatial fractional nonlinear Allen-Cahn equations
    Li, Huanrong
    Li, Yuejie
    Zeng, Yihui
    Luo, Zhendong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 167 : 110 - 122
  • [32] A posteriori error estimates for the Crank-Nicolson method for parabolic equations
    Akrivis, G
    Makridakis, C
    Nochetto, RH
    MATHEMATICS OF COMPUTATION, 2006, 75 (254) : 511 - 531
  • [33] A Two-Grid Finite Element Method for Nonlinear Sobolev Equations
    Chen, Chuanjun
    Li, Kang
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2018, 8 (03) : 549 - 565
  • [34] A NEW ERROR ESTIMATE FOR A FULLY FINITE ELEMENT DISCRETIZATION SCHEME FOR PARABOLIC EQUATIONS USING CRANK-NICOLSON METHOD
    Bradji, Abdallah
    Fuhrmann, Juergen
    MATHEMATICA BOHEMICA, 2014, 139 (02): : 113 - 124
  • [35] A new mixed finite element method based on the Crank-Nicolson scheme for the parabolic problems
    Weng, Zhifeng
    Feng, Xinlong
    Huang, Pengzhan
    APPLIED MATHEMATICAL MODELLING, 2012, 36 (10) : 5068 - 5079
  • [36] A New Reduced-Dimension Iteration Two-Grid Crank-Nicolson Finite-Element Method for Unsaturated Soil Water Flow Problem
    Hou, Xiaoli
    Teng, Fei
    Luo, Zhendong
    Fu, Hui
    MATHEMATICS, 2024, 12 (11)
  • [37] Stability and convergence of a Crank-Nicolson finite volume method for space fractional diffusion equations
    Fu, Hongfei
    Sun, Yanan
    Wang, Hong
    Zheng, Xiangcheng
    APPLIED NUMERICAL MATHEMATICS, 2019, 139 : 38 - 51
  • [38] Two-grid mixed finite element method for nonlinear hyperbolic equations
    Wang, Keyan
    Chen, Yanping
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (06) : 1489 - 1505
  • [39] Optimal error estimates of a Crank-Nicolson finite element projection method for magnetohydrodynamic equations
    Wang, Cheng
    Wang, Jilu
    Xia, Zeyu
    Xu, Liwei
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (03) : 767 - 789
  • [40] A priori error estimates of Crank-Nicolson finite element method for parabolic optimal control problems
    Zhang, Xindan
    Zhao, Jianping
    Hou, Yanren
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 144 : 274 - 289