Anderson localization of composite excitations in disordered optomechanical arrays

被引:20
|
作者
Roque, Thales Figueiredo [1 ]
Peano, Vittorio [2 ,3 ]
Yevtushenko, Oleg M. [2 ]
Marquardt, Florian [2 ,4 ]
机构
[1] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083859 Sao Paulo, Brazil
[2] Univ Erlangen Nurnberg, Inst Theoret Phys 2, D-91058 Erlangen, Germany
[3] Univ Malta, Dept Phys, Msida 2080, Msd, Malta
[4] Max Planck Inst Sci Light, Gunther Scharowsky Str 1, D-91058 Erlangen, Germany
来源
NEW JOURNAL OF PHYSICS | 2017年 / 19卷
基金
巴西圣保罗研究基金会;
关键词
optomechanics; localization; disordered structures; DIFFUSION; LATTICES; WAVES; LIGHT;
D O I
10.1088/1367-2630/aa52e2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Optomechanical (OMA) arrays are a promising future platform for studies of transport, many-body dynamics, quantum control and topological effects in systems of coupled photon and phonon modes. We introduce disordered OMA arrays, focusing on features of Anderson localization of hybrid photon-phonon excitations. It turns out that these represent a unique disordered system, where basic parameters can be easily controlled by varying the frequency and the amplitude of an external laser field. We show that the two-species setting leads to a non-trivial frequency dependence of the localization length for intermediate laser intensities. This could serve as a convincing evidence of localization in a non-equilibrium dissipative situation.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Transverse Anderson localization in a disordered glass optical fiber
    Karbasi, Salman
    Hawkins, Thomas
    Ballato, John
    Koch, Karl W.
    Mafi, Arash
    OPTICAL MATERIALS EXPRESS, 2012, 2 (11): : 1496 - 1503
  • [32] Pseudogap and Anderson localization of light in correlated disordered media
    Monsarrat, R.
    Pierrat, R.
    Tourin, A.
    Goetschy, A.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (03):
  • [33] Anderson localization of flexural waves in disordered elastic beams
    Jesús Calleja Ángel
    José Concepción Torres Guzmán
    Alfredo Díaz de Anda
    Scientific Reports, 9
  • [34] ANDERSON LOCALIZATION ON A DISORDERED SERIES-PARALLEL LATTICE
    ZEKRI, N
    BREZINI, A
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1986, 133 (02): : 463 - 468
  • [35] Propagation, hybridization and localization of vibrational excitations in disordered materials
    Taraskin, SN
    Ludlam, JJ
    Natarajan, G
    Elliott, SR
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 2002, 82 (02): : 197 - 208
  • [36] Spatial localization and pattern formation in discrete optomechanical cavities and arrays
    Ruiz-Rivas, J.
    Patera, G.
    Navarrete-Benlloch, C.
    Roldan, E.
    de Valcarcel, G. J.
    NEW JOURNAL OF PHYSICS, 2020, 22 (09)
  • [37] Anderson localization of elementary excitations in disordered binary Bose mixtures: Effects of the Lee-Huang-Yang quantum and thermal corrections
    Zohra, Mehri
    Boudjemaa, Abdelaali
    PHYSICAL REVIEW A, 2024, 110 (05)
  • [38] Tunable Anderson localization in disorder graphene sheet arrays
    Xu, Yi
    Deng, Hai-dong
    OPTICS LETTERS, 2016, 41 (03) : 567 - 570
  • [39] Fractal Waveguide Arrays Induce Maximal Anderson Localization
    Guglielmon, Jonathan
    Rechtsman, Mikael C.
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [40] Transversal Anderson localization of sound in acoustic waveguide arrays
    Ye, Yangtao
    Ke, Manzhu
    Feng, Junheng
    Wang, Mudi
    Qiu, Chunyin
    Liu, Zhengyou
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (15)