Identities for Hermite Base Combinatorial Polynomials and Numbers

被引:1
|
作者
Yuluklu, Eda [1 ]
机构
[1] Usak Univ, Fac Sci & Arts, Dept Math, 1 Eylul Campus, TR-64200 Usak, Turkey
关键词
Hermite base polynomials; Combinatorial numbers and polynomials; APOSTOL-TYPE NUMBERS; BERNOULLI;
D O I
10.1063/5.0031017
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The aim of this paper is to define new generating functions of Hermite base combinatorial type numbers and polynomials. We investigate various fundamental properties of these numbers and polynomials. Moreover, we also give relations and identities related to these polynomials and combinatorial numbers and polynomials.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] IDENTITIES AND RELATIONS ON THE HERMITE-BASED TANGENT POLYNOMIALS
    Kurt, B.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (02): : 321 - 337
  • [32] Application of Faber Polynomials in Proving Combinatorial Identities
    F. G. Abdullaev
    M. Imash-kyzy
    V. V. Savchuk
    Ukrainian Mathematical Journal, 2018, 70 : 165 - 181
  • [33] Extended Laguerre Polynomials Associated with Hermite, Bernoulli, and Euler Numbers and Polynomials
    Kim, Taekyun
    Kim, Dae San
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [34] Some Identities of Bernoulli Numbers and Polynomials Associated with Bernstein Polynomials
    Min-Soo Kim
    Taekyun Kim
    Byungje Lee
    Cheon-Seoung Ryoo
    Advances in Difference Equations, 2010
  • [35] Some Identities of Bernoulli Numbers and Polynomials Associated with Bernstein Polynomials
    Kim, Min-Soo
    Kim, Taekyun
    Lee, Byungje
    Ryoo, Cheon-Seoung
    ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [36] Combinatorial proofs of identities for the generalized Leonardo numbers
    Shattuck, Mark
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2022, 28 (04) : 778 - 790
  • [37] Identities for generalized Fibonacci numbers: a combinatorial approach
    Plaza, A.
    Falcon, S.
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2008, 39 (04) : 563 - 566
  • [38] Combinatorial identities for the r-Lah numbers
    Belbachir, Hacene
    Bousbaa, Imad Eddine
    ARS COMBINATORIA, 2014, 115 : 453 - 458
  • [39] Some combinatorial identities via Fibonacci numbers
    Lee, GY
    Kim, JS
    Cho, SH
    DISCRETE APPLIED MATHEMATICS, 2003, 130 (03) : 527 - 534
  • [40] Combinatorial identities on binomial coefficients and harmonic numbers
    Chu, Wenchang
    Yan, Qinglun
    UTILITAS MATHEMATICA, 2008, 75 : 51 - 66