Superconvergence of Finite Element Approximations for the Fractional Diffusion-Wave Equation

被引:28
|
作者
Ren, Jincheng [1 ]
Long, Xiaonian [2 ,3 ,4 ]
Mao, Shipeng [2 ,3 ,4 ]
Zhang, Jiwei [5 ]
机构
[1] Henan Univ Econ & Law, Coll Math & Informat Sci, Zhengzhou 450045, Henan, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100190, Peoples R China
[5] Beijing Computat Sci Res Ctr, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional diffusion-wave equation; Finite element method; Fully discrete scheme; Error estimate; NUMERICAL APPROXIMATION; SPACE; SUBDIFFUSION;
D O I
10.1007/s10915-017-0385-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the error estimates of fully discrete finite element approximation for the time fractional diffusion-wave equation are discussed. Based on the standard Galerkin finite element method approach for the spatial discretization and the L1 formula for the approximation of the time fractional derivative, the fully discrete scheme for solving the constant coefficient fractional diffusion-wave equation is obtained and the superconvergence estimate is proposed and analyzed. Further, a fully discrete finite element scheme is presented for solving the variable coefficient fractional diffusion-wave equation and the corresponding error estimates are also established. Finally, numerical experiments are included to support the theoretical results.
引用
收藏
页码:917 / 935
页数:19
相关论文
共 50 条
  • [31] A NOVEL FINITE DIFFERENCE SCHEME FOR TIME FRACTIONAL DIFFUSION-WAVE EQUATION WITH SINGULAR KERNEL
    Bouguetof, K.
    Haouam, K.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 (03): : 681 - 688
  • [32] Error estimates of a semidiscrete finite element method for fractional stochastic diffusion-wave equations
    Zou, Guang-an
    Atangana, Abdon
    Zhou, Yong
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (05) : 1834 - 1848
  • [33] Asymptotic properties of solutions of the fractional diffusion-wave equation
    Kochubei, Anatoly N.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (03) : 881 - 896
  • [34] Asymptotic properties of solutions of the fractional diffusion-wave equation
    Anatoly N. Kochubei
    Fractional Calculus and Applied Analysis, 2014, 17 : 881 - 896
  • [35] Superconvergence of Finite Element Approximations to Eigenspaces
    S. I. Solov'ev
    Differential Equations, 2002, 38 : 752 - 753
  • [36] Superconvergence of finite element approximations to eigenspaces
    Solov'ev, SI
    DIFFERENTIAL EQUATIONS, 2002, 38 (05) : 752 - 753
  • [37] OSCILLATION OF TIME FRACTIONAL VECTOR DIFFUSION-WAVE EQUATION WITH FRACTIONAL DAMPING
    Ramesh, R.
    Harikrishnan, S.
    Nieto, J. J.
    Prakash, P.
    OPUSCULA MATHEMATICA, 2020, 40 (02) : 291 - 305
  • [38] CONTINUITY WITH RESPECT TO FRACTIONAL ORDER OF THE TIME FRACTIONAL DIFFUSION-WAVE EQUATION
    Nguyen Huy Tuan
    O'Regan, Donal
    Tran Bao Ngoc
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2020, 9 (03): : 773 - 793
  • [39] FINITE-ELEMENT APPROXIMATIONS FOR A DIFFUSION EQUATION
    SCHOLZ, R
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1983, 63 (05): : T379 - T380
  • [40] High-accuracy finite element method for 2D time fractional diffusion-wave equation on anisotropic meshes
    Zhang, Y. D.
    Zhao, Y. M.
    Wang, F. L.
    Tang, Y. F.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (01) : 218 - 230