ON THE QUADRIC CMC SPACELIKE HYPERSURFACES IN LORENTZIAN SPACE FORMS

被引:2
|
作者
Aquino, Cicero P. [1 ]
de Lima, Henrique F. [2 ]
dos Santos, Fabio R. [2 ]
机构
[1] Univ Fed Piaui, Dept Matemat, BR-64049550 Teresina, Piaui, Brazil
[2] Univ Fed Campina Grande, Dept Matemat, BR-58429970 Campina Grande, Paraiba, Brazil
关键词
Lorentzian space forms; complete spacelike hypersurfaces; totally umbilical hypersurfaces; hyperbolic cylinders; constant mean curvature; support functions; CONSTANT MEAN-CURVATURE;
D O I
10.4064/cm6442-10-2015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with complete spacelike hypersurfaces immersed with constant mean curvature in a Lorentzian space form. Under the assumption that the support functions with respect to a fixed nonzero vector are linearly related, we prove that such a hypersurface must be either totally umbilical or isometric to a hyperbolic cylinder of the ambient space.
引用
收藏
页码:89 / 98
页数:10
相关论文
共 50 条
  • [31] CHARACTERIZATIONS OF LINEAR WEINGARTEN SPACELIKE HYPERSURFACES IN LORENTZ SPACE FORMS
    Aquino, Cicero P.
    de Lima, Henrique F.
    Velasquez, Marco Antonio L.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2015, 45 (01) : 13 - 27
  • [32] A Note on Spacelike Submanifolds Through Light Cones in Lorentzian Space Forms
    Canovas, Veronica L.
    de la Fuente, Daniel
    Palomo, Francisco J.
    RESULTS IN MATHEMATICS, 2021, 76 (01)
  • [33] Spacelike Willmore surfaces in 4-dimensional Lorentzian space forms
    Ma Xiang
    Wang Peng
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (09): : 1561 - 1576
  • [34] Spacelike Willmore surfaces in 4-dimensional Lorentzian space forms
    Xiang Ma
    Peng Wang
    Science in China Series A: Mathematics, 2008, 51 : 1561 - 1576
  • [35] Spacelike Willmore surfaces in 4-dimensional Lorentzian space forms
    MA Xiang & WANG Peng School of Mathematical Sciences
    ScienceinChina(SeriesA:Mathematics), 2008, (09) : 1561 - 1576
  • [36] Spacelike Hypersurfaces in the Lorentz-Minkowski Space with the Same Riemannian and Lorentzian Mean Curvature
    Alarcon, Eva M.
    Albujer, Alma L.
    Caballero, Magdalena
    LORENTZIAN GEOMETRY AND RELATED TOPICS, GELOMA 2016, 2017, 211 : 1 - 12
  • [37] Generalized maximum principles and the unicity of complete spacelike hypersurfaces immersed in a Lorentzian product space
    De Lima H.F.
    Lima Jr. E.A.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2014, 55 (1): : 59 - 75
  • [38] GEOMETRIC ANALYSIS OF LORENTZIAN DISTANCE FUNCTION ON SPACELIKE HYPERSURFACES
    Alias, Luis J.
    Hurtado, Ana
    Palmer, Vicente
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (10) : 5083 - 5106
  • [39] Classification of spacelike conformal Einstein hypersurfaces in Lorentzian space Rn+1 1
    Chen, Yayun
    Li, Tongzhu
    AIMS MATHEMATICS, 2023, 8 (10): : 23247 - 23271
  • [40] A Note on Spacelike Submanifolds Through Light Cones in Lorentzian Space Forms
    Verónica L. Cánovas
    Daniel de la Fuente
    Francisco J. Palomo
    Results in Mathematics, 2021, 76