The extension problem of the mean curvature flow (I)

被引:11
|
作者
Li, Haozhao [1 ]
Wang, Bing [2 ]
机构
[1] Univ Sci & Technol China, Chinese Acad Sci, Sch Math Sci, Key Lab Wu Wen Tsun Math, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Inst Geometry & Phys, Sch Math Sci, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China
关键词
SINGULAR SET; RICCI FLOWS; HYPERSURFACES; 3-MANIFOLDS; SURFACES; BEHAVIOR; THEOREMS; SPACE;
D O I
10.1007/s00222-019-00893-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the mean curvature blows up at the first finite singular time for a closed smooth embedded mean curvature flow IN R-3
引用
收藏
页码:721 / 777
页数:57
相关论文
共 50 条
  • [41] Spacelike Mean Curvature Flow
    Lambert, Ben
    Lotay, Jason D.
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (02) : 1291 - 1359
  • [42] Mean curvature flow with obstacles
    Almeida, L.
    Chambolle, A.
    Novaga, M.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (05): : 667 - 681
  • [43] Mean Curvature Flow in -manifolds
    Schaefer, Lars
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2012, 15 (03) : 231 - 255
  • [44] Gaussian mean curvature flow
    Alexander A. Borisenko
    Vicente Miquel
    Journal of Evolution Equations, 2010, 10 : 413 - 423
  • [45] Skew mean curvature flow
    Song, Chong
    Sun, Jun
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (01)
  • [46] Hyperbolic flow by mean curvature
    Rotstein, Horacio G.
    Brandon, Simon
    Novick-Cohen, Amy
    Journal of Crystal Growth, 1999, 198-199 (pt 2): : 1256 - 1261
  • [47] Hyperbolic flow by mean curvature
    Rotstein, HG
    Brandon, S
    Novick-Cohen, A
    JOURNAL OF CRYSTAL GROWTH, 1999, 198 : 1256 - 1261
  • [48] Riemannian mean curvature flow
    Estépar, RSJ
    Haker, S
    Westin, CF
    ADVANCES IN VISUAL COMPUTING, PROCEEDINGS, 2005, 3804 : 613 - 620
  • [49] Singularities of mean curvature flow
    Yuanlong Xin
    Science China Mathematics, 2021, 64 : 1349 - 1356
  • [50] On mean curvature flow with forcing
    Kim, Inwon
    Kwon, Dohyun
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (05) : 414 - 455