Discrete Legendre spectral projection methods for Fredholm-Hammerstein integral equations

被引:31
|
作者
Das, Payel [1 ]
Nelakanti, Gnaneshwar [1 ]
Long, Guangqing [2 ]
机构
[1] Indian Inst Technol, Dept Math, Kharagpur 721302, W Bengal, India
[2] GuangXi Teachers Educ Univ, Dept Math, Nanning 530001, Peoples R China
关键词
Hammerstein integral equations; Spectral method; Discrete Galerkin; Discrete collocation; Numerical quadrature; Convergence rates; COLLOCATION-TYPE METHOD; GALERKIN METHOD; SUPERCONVERGENCE;
D O I
10.1016/j.cam.2014.10.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we discuss the discrete Legendre Galerkin and discrete Legendre collocation methods for Fredholm-Hammerstein integral equations with smooth kernel. Using sufficiently accurate numerical quadrature rule, we obtain optimal convergence rates for both discrete Legendre Galerkin and discrete Legendre collocation solutions in both infinity and L-2-norm. Numerical examples are given to illustrate the theoretical results. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:293 / 305
页数:13
相关论文
共 50 条
  • [1] Legendre Spectral Projection Methods for Fredholm-Hammerstein Integral Equations
    Das, Payel
    Sahani, Mitali Madhumita
    Nelakanti, Gnaneshwar
    Long, Guangqing
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (01) : 213 - 230
  • [2] Superconvergence of Legendre spectral projection methods for Fredholm-Hammerstein integral equations
    Mandal, Mournita
    Nelakanti, Gnaneshwar
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 319 : 423 - 439
  • [3] Discrete Legendre spectral projection methods for Fredholm-Hammerstein integral equations (vol 278, pg 293, 2015)
    Das, Payel
    Nelakanti, Gnaneshwar
    Long, Guangqing
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 292 : 634 - 636
  • [4] Superconvergence results of Legendre spectral projection methods for weakly singular Fredholm-Hammerstein integral equations
    Mandal, Moumita
    Nelakanti, Gnaneshwar
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 349 : 114 - 131
  • [5] Legendre Spectral Projection Methods for Fredholm–Hammerstein Integral Equations
    Payel Das
    Mitali Madhumita Sahani
    Gnaneshwar Nelakanti
    Guangqing Long
    Journal of Scientific Computing, 2016, 68 : 213 - 230
  • [6] Discrete Legendre Collocation Methods for Fredholm-Hammerstein Integral Equations with Weakly Singular Kernel
    Panigrahi, Bijaya Laxmi
    MATHEMATICS AND COMPUTING (ICMC 2018), 2018, 253 : 315 - 328
  • [7] Discrete projection methods for Fredholm-Hammerstein integral equations using Kumar and Sloan technique
    Nigam, Ritu
    Nahid, Nilofar
    Chakraborty, Samiran
    Nelakanti, Gnaneshwar
    CALCOLO, 2024, 61 (02)
  • [8] Discrete Legendre spectral methods for Hammerstein type weakly singular nonlinear Fredholm integral equations
    Mandal, Moumita
    Kant, Kapil
    Nelakanti, Gnaneshwar
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (11) : 2251 - 2267
  • [9] Convergence analysis of discrete legendre spectral projection methods for hammerstein integral equations of mixed type
    Das, Payel
    Nelakanti, Gnaneshwar
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 265 : 574 - 601
  • [10] Approximation methods for system of nonlinear Fredholm-Hammerstein integral equations
    Chakraborty, Samiran
    Nelakanti, Gnaneshwar
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (01):