Mean curvature of extrinsic spheres in submanifolds of real space forms

被引:0
|
作者
Palmer, V [1 ]
Piñero, M [1 ]
机构
[1] Univ Jaume 1, Dept Matemat, E-12071 Castellon de La Plana, Spain
关键词
D O I
10.1007/s00013-004-1041-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a submanifold P-m with the Hilbert-Schmidt norm of its second fundamental form bounded from above, in a real space form of constant curvature b, K-n (b), we have obtained a lower bound for the norm of the mean curvature normal vector field of extrinsic spheres with sufficiently small radius in P-m in terms of the mean curvature of the geodesic spheres in K-m (b), with same radius, and the mean curvature of P-m.
引用
收藏
页码:371 / 380
页数:10
相关论文
共 50 条
  • [21] Extrinsic spheres in a real space form
    Deshmukh, Sharief
    Shahid, Mohammad Hasan
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2008, 15 (02) : 269 - 275
  • [22] Isotropic Submanifolds of Real Space Forms
    Kim, Young Ho
    KYUNGPOOK MATHEMATICAL JOURNAL, 2012, 52 (03): : 271 - 278
  • [23] Submanifolds with nonpositive extrinsic curvature
    Samuel Canevari
    Guilherme Machado de Freitas
    Fernando Manfio
    Annali di Matematica Pura ed Applicata (1923 -), 2017, 196 : 407 - 426
  • [24] Submanifolds with nonpositive extrinsic curvature
    Canevari, Samuel
    de Freitas, Guilherme Machado
    Manfio, Fernando
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (02) : 407 - 426
  • [25] ON SUBMANIFOLDS WITH NONPOSITIVE EXTRINSIC CURVATURE
    FLORIT, LA
    MATHEMATISCHE ANNALEN, 1994, 298 (01) : 187 - 192
  • [26] C-Totally Real Submanifolds with Constant Sectional Curvature in the Sasakian Space Forms
    Cheng, Xiuxiu
    He, Huili
    Hu, Zejun
    RESULTS IN MATHEMATICS, 2021, 76 (03)
  • [27] Submanifolds of complex space forms with parallel mean curvature vector fields and equal Kahler angles
    Li, GH
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2004, 35 (06): : 759 - 769
  • [28] C-Totally Real Submanifolds with Constant Sectional Curvature in the Sasakian Space Forms
    Xiuxiu Cheng
    Huili He
    Zejun Hu
    Results in Mathematics, 2021, 76
  • [29] Relating diameter and mean curvature for submanifolds of Euclidean space
    Topping, Peter
    COMMENTARII MATHEMATICI HELVETICI, 2008, 83 (03) : 539 - 546
  • [30] On the Mean Curvature Flow of Submanifolds in the Standard Gaussian Space
    Li, An-Min
    Li, Xingxiao
    Zhang, Di
    RESULTS IN MATHEMATICS, 2020, 75 (04)