TP53_PROF: a machine learning model to predict impact of missense mutations in TP53

被引:10
|
作者
Ben-Cohen, Gil [2 ]
Doffe, Flora [3 ]
Devir, Michal [2 ]
Leroy, Bernard [4 ]
Soussi, Thierry [4 ]
Rosenberg, Shai [1 ,5 ,6 ]
机构
[1] Hebrew Univ Jerusalem, Fac Med, Jerusalem, Israel
[2] Hebrew Univ Jerusalem, Jerusalem, Israel
[3] Univ Paris Saclay, Gif Sur Yvette, France
[4] Sorbonne Univ, Paris, France
[5] Hebrew Univ Jerusalem, Gaffin Ctr Neurooncol, Sharett Inst Oncol, Hadassah Med Ctr, Jerusalem, Israel
[6] Hebrew Univ Jerusalem, Wohl Inst Translat Med, Hadassah Med Ctr, Jerusalem, Israel
关键词
TP53; genetic counseling; Li-Fraumeni syndrome; precision medicine; personalized oncology; machine learning; DNA-BINDING COOPERATIVITY; P53; DATABASE; PROTEIN; OLIGOMERIZATION; RECOMMENDATIONS; CONFORMATION; REASSESSMENT; INHIBITION; LANDSCAPE;
D O I
10.1093/bib/bbab524
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Correctly identifying the true driver mutations in a patient's tumor is a major challenge in precision oncology. Most efforts address frequent mutations, leaving medium- and low-frequency variants mostly unaddressed. For TP53, this identification is crucial for both somatic and germline mutations, with the latter associated with the Li-Fraumeni syndrome (LFS), a multiorgan cancer predisposition. We present TP53_PROF (prediction of functionality), a gene specific machine learning model to predict the functional consequences of every possible missense mutation in TP53, integrating human cell- and yeast-based functional assays scores along with computational scores. Variants were labeled for the training set using well-defined criteria of prevalence in four cancer genomics databases. The model's predictions provided accuracy of 96.5%. They were validated experimentally, and were compared to population data, LFS datasets, ClinVar annotations and to TCGA survival data. Very high accuracy was shown through all methods of validation. TP53_PROF allows accurate classification of TP53 missense mutations applicable for clinical practice. Our gene specific approach integrated machine learning, highly reliable features and biological knowledge, to create an unprecedented, thoroughly validated and clinically oriented classification model. This approach currently addresses TP53 mutations and will be applied in the future to other important cancer genes.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] TP53 missense mutations in PDAC are associated with enhanced fibrosis and an immunosuppressive microenvironment
    Maddalena, Martino
    Mallel, Giuseppe
    Nataraj, Nishanth Belugali
    Shreberk-Shaked, Michal
    Hassin, Ori
    Mukherjee, Saptaparna
    Arandkar, Sharathchandra
    Rotkopf, Ron
    Kapsack, Abby
    Lambiase, Giuseppina
    Pellegrino, Bianca
    Ben-Isaac, Eyal
    Golani, Ofra
    Addadi, Yoseph
    Hajaj, Emma
    Eilam, Raya
    Straussman, Ravid
    Yarden, Yosef
    Lotem, Michal
    Oren, Moshe
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (23)
  • [22] The TP53 Codon72 Polymorphism Is Associated with TP53 Mutations in Chronic Lymphocytic Leukemia
    Grossmann, Vera
    Artusi, Valentina
    Schnittger, Susanne
    Dicker, Frank
    Jeromin, Sabine
    Boeck, Lucia
    Haferlach, Torsten
    Haferlach, Claudia
    Kern, Wolfgang
    Kohlmann, Alexander
    BLOOD, 2011, 118 (21) : 778 - 778
  • [23] TP53 mutations and relevance of expression of TP53 pathway genes in paediatric acute myeloid leukaemia
    Cucchi, David G. J.
    Bachas, Costa
    Klein, Kim
    Huttenhuis, Sander
    Zwaan, Christian M.
    Ossenkoppele, Gert J.
    Janssen, Jeroen M. W. M.
    Kaspers, Gertjan L.
    Cloos, Jacqueline
    BRITISH JOURNAL OF HAEMATOLOGY, 2020, 188 (05) : 736 - 739
  • [24] Limited importance of the dominant-negative effect of TP53 missense mutations
    Stoczynska-Fidelus, Ewelina
    Szybka, Malgorzata
    Piaskowski, Sylwester
    Bienkowski, Michal
    Hulas-Bigoszewska, Krystyna
    Banaszczyk, Mateusz
    Zawlik, Izabela
    Jesionek-Kupnicka, Dorota
    Kordek, Radzislaw
    Liberski, Pawel P.
    Rieske, Piotr
    BMC CANCER, 2011, 11
  • [25] TP53 mutations and Their Impact on Survival in Patients with Myeloproliferative Neoplasms
    Rolles, Benjamin
    De Oliveira Filho, Cilomar Martins
    Keating, Julia
    Luskin, Marlise R.
    DeAngelo, Daniel J.
    Lindsley, Coleman
    Kim, Annette S.
    Hem, Jessica
    Kim, Chulwoo J.
    Weeks, Lachelle D.
    Wazir, Mohammed
    How, Joan
    Marneth, Anna E.
    Liu, Yiwen
    Aryee, Martin J.
    Tsai, Harrison K.
    Stahl, Maximilian
    Mullally, Ann
    BLOOD, 2023, 142
  • [26] Impact of TP53 mutations in Triple Negative Breast Cancer
    Zahi I. Mitri
    Nour Abuhadra
    Shaun M. Goodyear
    Evthokia A. Hobbs
    Andy Kaempf
    Alastair M. Thompson
    Stacy L. Moulder
    npj Precision Oncology, 6
  • [27] Impact of TP53 mutations in Triple Negative Breast Cancer
    Mitri, Zahi, I
    Abuhadra, Nour
    Goodyear, Shaun M.
    Hobbs, Evthokia A.
    Kaempf, Andy
    Thompson, Alastair M.
    Moulder, Stacy L.
    NPJ PRECISION ONCOLOGY, 2022, 6 (01)
  • [28] TP53, TP53 Target Genes (DRAM, TIGAR), and Autophagy
    Hu, Wanglai
    Chen, Song
    Thorne, Rick F.
    Wu, Mian
    AUTOPHAGY: BIOLOGY AND DISEASES: BASIC SCIENCE, 2019, 1206 : 127 - 149
  • [29] TP53 gene mutations in canine osteosarcoma
    Kirpensteijn, Jolle
    Kik, Marja
    Teske, Erik
    Rutteman, Gerard R.
    VETERINARY SURGERY, 2008, 37 (05) : 454 - 460
  • [30] TP53 Mutations in Uterine Atypical Leiomyomas
    Kuhn, E.
    Yemelyanova, A.
    Wang, T-L
    Kurman, R. J.
    Shih, I-M
    MODERN PATHOLOGY, 2012, 25 : 281A - 282A