Approaches to improve the lipid synthesis of oleaginous yeast Yarrowia lipolytica: A review

被引:54
|
作者
Bao, Wenjun [1 ]
Li, Zifu [1 ]
Wang, Xuemei [1 ,2 ]
Gao, Ruiling [1 ]
Zhou, Xiaoqin [1 ]
Cheng, Shikun [1 ]
Men, Yu [1 ]
Zheng, Lei [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Energy & Environm Engn, Beijing Key Lab Resource Oriented Treatment Ind P, Int Sci & Technol Cooperat Base Environm & Energy, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Shunde Grad Sch, Beijing, Peoples R China
来源
关键词
Yarrowia lipolytica; Microbial oils; Culture factors; Cultivation modes; Genetics; Lipids extraction; SINGLE-CELL OIL; VOLATILE FATTY-ACIDS; MICROBIAL LIPIDS; BIODIESEL PRODUCTION; FED-BATCH; RHODOSPORIDIUM-TORULOIDES; WASTE-WATER; CRYPTOCOCCUS-CURVATUS; POTENTIAL FEEDSTOCK; INDUSTRIAL-WASTE;
D O I
10.1016/j.rser.2021.111386
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microbial oils have become a research hotspot in alleviating energy challenges and environmental problems because of their potential to be green alternatives of traditional fossil fuels. Yarrowia lipolytica is a promising oleaginous yeast that can utilize various, especially low-cost carbon sources to synthesize considerable lipids more than 30% of dry cell weight, which is attracting researchers' attention. Based on well understanding of its lipid synthesis and metabolism mechanism, various optimization approaches have been studied dispersedly to improve the lipid synthesis and realize the industrial-scale application of Y. lipolytica. Some approaches are focused on improving and optimizing culture conditions, such as temperature, pH value, and rotating speed, etc. Other approaches are dedicated to the optimization of nutrient elements, such as carbon source, nitrogen source type and/or concentration, and C/N ratio, etc. Some adjust the cultivation mode to facilitate nutrient assimi-lation and transformation, and others use genetic engineering to modify this yeast. This review focuses on the comprehensive and detailed analyses of feasible enhancement approaches for lipid synthesis. Some prospects will also be introduced as references for further study.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Identification of a Mitochondrial Oxodicarboxylate Carrier in the Oleaginous Yeast Yarrowia lipolytica
    Trotter, Pamela J.
    Juco, Karen
    McGreer, Samantha
    Orsi, Natalie
    Pierson, Paige N.
    Savage, Nowlan
    Tamayo, Lizeth
    Nicaud, Jean-Marc
    FASEB JOURNAL, 2016, 30
  • [22] Engineering oleaginous yeast Yarrowia lipolytica for production of fuels and chemicals
    Xu, Peng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [23] The metabolism and genetic regulation of lipids in the oleaginous yeast Yarrowia lipolytica
    Galvez-Lopez, Didiana
    Chavez-Melendez, Bianca
    Vazquez-Ovando, Alfredo
    Rosas-Quijano, Raymundo
    BRAZILIAN JOURNAL OF MICROBIOLOGY, 2019, 50 (01) : 23 - 31
  • [24] Improving the Synthesis of Odd-Chain Fatty Acids in the Oleaginous Yeast Yarrowia lipolytica
    Chalabi, Nour Tabaa
    El Kantar, Sally
    De Souza, Camilla Pires
    Khelfa, Anissa
    Nicaud, Jean-Marc
    Debs, Esperance
    Louka, Nicolas
    Koubaa, Mohamed
    FERMENTATION-BASEL, 2024, 10 (12):
  • [25] Genome-scale modeling helps to increase lipid accumulation in the oleaginous yeast Yarrowia lipolytica
    Kavscek, Martin
    Bhutada, Govindprasad
    Kohlwein, Sepp D.
    Natter, Klaus
    YEAST, 2015, 32 : S236 - S236
  • [26] Control of Lipid Accumulation in the Yeast Yarrowia lipolytica
    Beopoulos, Athanasios
    Mrozova, Zuzana
    Thevenieau, France
    Le Dall, Marie-Therese
    Hapala, Ivan
    Papanikolaou, Seraphim
    Chardot, Thierry
    Nicaud, Jean-Marc
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (24) : 7779 - 7789
  • [27] Characterization of phosphatidic acid phosphatase activity in the oleaginous yeast Yarrowia lipolytica and its role in lipid biosynthesis
    Hardman, Derell
    McFalls, Daniel
    Fakas, Stylianos
    YEAST, 2017, 34 (02) : 83 - 91
  • [28] Metabolic engineering for ricinoleic acid production in the oleaginous yeast Yarrowia lipolytica
    A. Beopoulos
    J. Verbeke
    F. Bordes
    M. Guicherd
    M. Bressy
    A. Marty
    Jean-Marc Nicaud
    Applied Microbiology and Biotechnology, 2014, 98 : 251 - 262
  • [29] Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β-ionone
    Czajka, Jeffrey J.
    Nathenson, Justin A.
    Benites, Veronica T.
    Baidoo, Edward E. K.
    Cheng, Qianshun
    Wang, Yechun
    Tang, Yinjie J.
    MICROBIAL CELL FACTORIES, 2018, 17
  • [30] Metabolic engineering for ricinoleic acid production in the oleaginous yeast Yarrowia lipolytica
    Beopoulos, A.
    Verbeke, J.
    Bordes, F.
    Guicherd, M.
    Bressy, M.
    Marty, A.
    Nicaud, Jean-Marc
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2014, 98 (01) : 251 - 262