Blind source separation with optimal transport non-negative matrix factorization

被引:9
|
作者
Rolet, Antoine [1 ]
Seguy, Vivien [1 ]
Blondel, Mathieu [2 ]
Sawada, Hiroshi [2 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Yoshida Honmachi, Kyoto, Japan
[2] NTT Commun Sci Labs, Kyoto, Japan
关键词
NMF; Speech; BSS; Optimal transport; ALGORITHMS;
D O I
10.1186/s13634-018-0576-2
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Optimal transport as a loss for machine learning optimization problems has recently gained a lot of attention. Building upon recent advances in computational optimal transport, we develop an optimal transport non-negative matrix factorization (NMF) algorithm for supervised speech blind source separation (BSS). Optimal transport allows us to design and leverage a cost between short-time Fourier transform (SIFT) spectrogram frequencies, which takes into account how humans perceive sound. We give empirical evidence that using our proposed optimal transport, NMF leads to perceptually better results than NMF with other losses, for both isolated voice reconstruction and speech denoising using BSS. Finally, we demonstrate how to use optimal transport for cross-domain sound processing tasks, where frequencies represented in the input spectrograms may be different from one spectrogram to another.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Estimation of the number of blind sources based on non-negative matrix factorization
    Li, Ning
    Shi, Tielin
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2007, 18 (22): : 2734 - 2737
  • [42] Adaptive Blind Signal Processing Based on Non-negative Matrix Factorization
    Liu, Gang
    Tian, Bo-ping
    Shan, Feng
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 2, 2009, : 63 - 66
  • [43] Non-negative Matrix Factorization: a blind sources separation method applied to optical fluorescence spectroscopy and multiplexing
    Montcuquet, Anne-Sophie
    Herve, Lionel
    Dinten, Jean-Marc
    Mars, Jerome I.
    BIOMEDICAL APPLICATIONS OF LIGHT SCATTERING IV, 2010, 7573
  • [44] Blind separation of fluorescence spectra using sparse non-negative matrix factorization on right hand factor
    Yang, Ruifang
    Zhao, Nanjing
    Xiao, Xue
    Yu, Shaohui
    Liu, Jianguo
    Liu, Wenqing
    JOURNAL OF CHEMOMETRICS, 2015, 29 (08) : 442 - 447
  • [45] Dropout non-negative matrix factorization
    Zhicheng He
    Jie Liu
    Caihua Liu
    Yuan Wang
    Airu Yin
    Yalou Huang
    Knowledge and Information Systems, 2019, 60 : 781 - 806
  • [46] Non-negative matrix factorization on kernels
    Zhang, Daoqiang
    Zhou, Zhi-Hua
    Chen, Songcan
    PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4099 : 404 - 412
  • [47] Non-negative Matrix Factorization: A Survey
    Gan, Jiangzhang
    Liu, Tong
    Li, Li
    Zhang, Jilian
    COMPUTER JOURNAL, 2021, 64 (07): : 1080 - 1092
  • [48] Collaborative Non-negative Matrix Factorization
    Benlamine, Kaoutar
    Grozavu, Nistor
    Bennani, Younes
    Matei, Basarab
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: TEXT AND TIME SERIES, PT IV, 2019, 11730 : 655 - 666
  • [49] INFINITE NON-NEGATIVE MATRIX FACTORIZATION
    Schmidt, Mikkel N.
    Morup, Morten
    18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 905 - 909
  • [50] Non-negative Matrix Factorization for EEG
    Jahan, Ibrahim Salem
    Snasel, Vaclav
    2013 INTERNATIONAL CONFERENCE ON TECHNOLOGICAL ADVANCES IN ELECTRICAL, ELECTRONICS AND COMPUTER ENGINEERING (TAEECE), 2013, : 183 - 187