Exergy analysis of thermal energy storage in a district energy application

被引:62
|
作者
Rezaie, Behnaz [1 ]
Reddy, Bale V. [1 ]
Rosen, Marc A. [1 ]
机构
[1] Univ Ontario, Inst Technol, Fac Engn & Appl Sci, Oshawa, ON L1H 7K4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Thermal energy storage; District energy; Solar energy; Exergy; Friedrichshafen district heating system;
D O I
10.1016/j.renene.2014.09.014
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The role of thermal energy storage (TES) in district energy (DE) system is assessed. The Friedrichshafen DE system is considered as a case study and exergy analysis is utilized. The TES is designed to complement and to increase the effectiveness of the solar panels included in the district energy system. The TES stores the surplus solar energy until is needed by thermal energy users of the Friedrichshafen DE system. The results quantify the positive impact of the TES on the performance of the Friedrichshafen DE system, and demonstrate that the overall energy and exergy efficiencies of the TES are 60% and 19%, respectively. It is also shown over an annual period that the temperature, energy, exergy and energy efficiency of the TES exhibit similar trends and that the TES exergy accumulation and exergy efficiency exhibit similar trends. Crown Copyright (C) 2014 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:848 / 854
页数:7
相关论文
共 50 条
  • [31] Comprehensive exergy analysis of the dynamic process of compressed air energy storage system with low-temperature thermal energy storage
    Guo, Cong
    Xu, Yujie
    Guo, Huan
    Zhang, Xinjing
    Lin, Xipeng
    Wang, Liang
    Zhang, Yi
    Chen, Haisheng
    APPLIED THERMAL ENGINEERING, 2019, 147 : 684 - 693
  • [32] Energy and Exergy Analysis of Ocean Compressed Air Energy Storage Concepts
    Patil, Vikram C.
    Ro, Paul I.
    JOURNAL OF ENGINEERING, 2018, 2018
  • [33] Energy and exergy analysis of adiabatic compressed air energy storage system
    Szablowski, Lukasz
    Krawczyk, Piotr
    Badyda, Krzysztof
    Karellas, Sotirios
    Kakaras, Emmanuel
    Bujalski, Wojciech
    ENERGY, 2017, 138 : 12 - 18
  • [34] Energy, exergy and sustainability analysis of a photovoltaic-thermal solar system with nano-enhancement and thermal energy storage integration
    Ozturk, Murat
    Yuksel, Coskun
    Ciftci, Erdem
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 187 : 593 - 604
  • [35] Energy and exergy analysis of a desiccant cooling system integrated with thermal energy storage and photovoltaic/thermal-solar air collectors
    Ma, Zhenjun
    Ren, Haoshan
    Sun, Zhongwei
    SCIENCE AND TECHNOLOGY FOR THE BUILT ENVIRONMENT, 2020, 26 (01) : 12 - 27
  • [36] Comprehensive energy, exergy, and economic analysis of the scenario of supplementing pumped thermal energy storage (PTES) with a concentrated photovoltaic thermal system
    Kursun, Burak
    Okten, Korhan
    ENERGY CONVERSION AND MANAGEMENT, 2022, 260
  • [37] Experimental investigation and exergy and energy analysis of a forced convection solar fish dryer integrated with thermal energy storage
    Embiale, Dessie Tadele
    Gunjo, Dawit Gudeta
    Venkatachalam, Chandraprabu
    Parthiban, Mohanram
    AIMS ENERGY, 2022, 10 (03) : 412 - 433
  • [38] Effect of stratification on energy and exergy capacities in thermal storage systems
    Rosen, MA
    Tang, R
    Dincer, I
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2004, 28 (02) : 177 - 193
  • [40] Sensible heat thermal storage energy and exergy performance evaluations
    Li, Gang
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 53 : 897 - 923