Object Detection and Classification Using GPU Acceleration

被引:2
|
作者
Prabhu, Shreyank [1 ]
Khopkar, Vishal [1 ]
Nivendkar, Swapnil [1 ]
Satpute, Omkar [1 ]
Jyotinagar, Varshapriya [1 ]
机构
[1] Veermata Jijabai Technol Inst, Mumbai 400019, Maharashtra, India
来源
COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING | 2020年 / 1108卷
关键词
Graphics processer unit; GPU; Object detection; Image processing; HOG; OpenCL; Self-driving cars; SVM;
D O I
10.1007/978-3-030-37218-7_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to speed up the image processing for self-driving cars, we propose a solution for fast vehicle classification using GPU computation. Our solution uses Histogram of Oriented Gradients (HOG) for feature extraction and Support Vector Machines (SVM) for classification. Our algorithm achieves a higher processing rate in frames per second (FPS) by using multi-core GPUs without compromising on its accuracy. The implementation of our GPU programming is in OpenCL, which is a platform independent library. We used a dataset of images of cars and other non-car objects on road to feed it to the classifier.
引用
收藏
页码:161 / 170
页数:10
相关论文
共 50 条
  • [21] Object detection and classification by cascade object training
    Chowdhury, Ahmed Masud
    Jabin, Jafrina
    Efaz, Erteza Tawsif
    Adnan, Md Ehtesham
    Habib, Ashfia Binte
    2020 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS 2020), 2020, : 21 - 25
  • [22] Contextual Object Detection Using Set-Based Classification
    Cinbis, Ramazan Gokberk
    Sclaroff, Stan
    COMPUTER VISION - ECCV 2012, PT VI, 2012, 7577 : 43 - 57
  • [23] Object Classification using CNN for Video Traffic Detection System
    Jang, Hyeok
    Yang, Hun-Jun
    Jeong, Dong-Seok
    Lee, Hun
    2015 21ST KOREA-JAPAN JOINT WORKSHOP ON FRONTIERS OF COMPUTER VISION, 2015,
  • [24] Flying Object Detection and Classification by Monitoring Using Video Images
    Sobue, Hideaki
    Fukushima, Yuki
    Kashiyama, Takahiro
    Sekimoto, Yoshihide
    25TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS (ACM SIGSPATIAL GIS 2017), 2017,
  • [25] POLLEN GRAIN CLASSIFICATION USING DEEP LEARNING OBJECT DETECTION
    Sergeant, C.
    Bielory, L.
    Joiner, D.
    Perigo, N.
    ANNALS OF ALLERGY ASTHMA & IMMUNOLOGY, 2021, 127 (05) : S23 - S23
  • [26] Image Classification Using Class-Agnostic Object Detection
    Holmes, Geoffrey
    Frank, Eibe
    Fletcher, Dale
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2023, PT I, 2023, 675 : 255 - 266
  • [27] Abandoned Object Detection and Classification Using Deep Embedded Vision
    Qasim, Arbab Muhammad
    Abbas, Naveed
    Ali, Amjid
    Al-Ghamdi, Bandar Ali Al-Rami
    IEEE ACCESS, 2024, 12 : 35539 - 35551
  • [28] Using multi-label classification to improve object detection
    Gong, Tao
    Liu, Bin
    Chu, Qi
    Yu, Nenghai
    NEUROCOMPUTING, 2019, 370 : 174 - 185
  • [29] Resiliency of automotive object detection networks on GPU architectures
    Lotfi, Atieh
    Hukerikar, Saurabh
    Balasubramanian, Keshav
    Racunas, Paul
    Saxena, Nirmal
    Bramley, Richard
    Huang, Yanxiang
    2019 IEEE INTERNATIONAL TEST CONFERENCE (ITC), 2019,
  • [30] Object Detection Implementation and Optimization on Embedded GPU System
    Yin, Xun
    Chen, Li
    Zhang, Xiaoyun
    Gao, Zhiyong
    2018 13TH IEEE INTERNATIONAL SYMPOSIUM ON BROADBAND MULTIMEDIA SYSTEMS AND BROADCASTING (BMSB), 2018,