On semilinear elliptic equations with diffuse measures

被引:4
|
作者
Klimsiak, Tomasz [1 ]
Rozkosz, Andrzej [1 ]
机构
[1] Nicholas Copernicus Univ, Fac Math & Comp Sci, Chopina 12-18, PL-87100 Torun, Poland
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2018年 / 25卷 / 04期
关键词
Semilinear elliptic equation; Dirichlet operator; Measure data; SYSTEMS; FORMS; L1;
D O I
10.1007/s00030-018-0526-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider semilinear equation of the form , where L is the operator corresponding to a transient symmetric regular Dirichlet form , is a diffuse measure with respect to the capacity associated with , and the lower-order perturbing term f(x, u) satisfies the sign condition in u and some weak integrability condition (no growth condition on f(x, u) as a function of u is imposed). We prove the existence of a solution under mild additional assumptions on . We also show that the solution is unique if f is nonincreasing in u.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] A TRUNCATION METHOD FOR SEMILINEAR ELLIPTIC-EQUATIONS
    JIN, ZR
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1994, 19 (3-4) : 605 - 616
  • [42] EXISTENCE THEOREM FOR A FAMILY OF SEMILINEAR ELLIPTIC EQUATIONS
    RABINOWITZ, PH
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (07): : A680 - A680
  • [43] Isolated boundary singularities of semilinear elliptic equations
    Marie-Françoise Bidaut-Véron
    Augusto C. Ponce
    Laurent Véron
    Calculus of Variations and Partial Differential Equations, 2011, 40 : 183 - 221
  • [44] On semilinear elliptic equations with borderline Hardy potentials
    Veronica Felli
    Alberto Ferrero
    Journal d'Analyse Mathématique, 2014, 123 : 303 - 340
  • [45] Regularity of the extremal solution of semilinear elliptic equations
    Nedev, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (11): : 997 - 1002
  • [46] Oscillatory radial solutions of semilinear elliptic equations
    Derrick, WR
    Chen, SH
    Cima, JA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 208 (02) : 425 - 445
  • [47] Quantitative bounds for subcritical semilinear elliptic equations
    Bonforte, Matteo
    Grillo, Gabriele
    Luis Vazquezo, Juan
    RECENT TRENDS IN NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS II: STATIONARY PROBLEMS, 2013, 595 : 63 - 89
  • [48] Semilinear Elliptic Equations with Uniform Blowup on the Boundary
    王春晴
    应用数学, 1996, (02)
  • [49] Singular solutions of semilinear elliptic and parabolic equations
    Qi S. Zhang
    Z. Zhao
    Mathematische Annalen, 1998, 310 : 777 - 794
  • [50] CONVEXITY OF SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS
    CAFFARELLI, LA
    FRIEDMAN, A
    DUKE MATHEMATICAL JOURNAL, 1985, 52 (02) : 431 - 456