Fuzzy quantum logics as a basis for quantum probability theory

被引:2
|
作者
Pykacz, J [1 ]
机构
[1] Univ Gdansk, Inst Math, PL-80952 Gdansk, Poland
关键词
D O I
10.1023/A:1026618818509
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Representation of an abstract quantum logic with an ordering set of states S in the form of a family L (S) of fuzzy subsets of S which fulfils conditions analogous to Kolmogorovian conditions imposed on a sigma-algebra of random events allows us to construct quantum probability calculus in a way completely parallel to the classical Kolmogorovian probability calculus. It is shown that the quantum probability calculus so constructed is a proper generalization of the classical Kolmogorovian one. Some indications for building a phase-space representation of quantum mechanics free of the problem of negative probabilities are given.
引用
收藏
页码:281 / 290
页数:10
相关论文
共 50 条
  • [31] FUZZY AND PROBABILITY UNCERTAINTY LOGICS
    GAINES, BR
    INFORMATION AND CONTROL, 1978, 38 (02): : 154 - 169
  • [32] Complexity of fuzzy probability logics
    Hájek, P
    Tulipani, S
    FUNDAMENTA INFORMATICAE, 2001, 45 (03) : 207 - 213
  • [33] Quantum Probability Calculus as Fuzzy-Kolmogorovian Probability Calculus
    Pykacz, Jaroslaw
    FOUNDATIONS OF PROBABILITY AND PHYSICS - 5, 2009, 1101 : 161 - 166
  • [34] Why probability appears in quantum theory
    Blackman, Jerome
    Hsiang, Wu Teh
    PHYSICS ESSAYS, 2013, 26 (01) : 34 - 39
  • [35] QUANTUM MECHANICS AND CLASSICAL PROBABILITY THEORY
    SNEED, JD
    SYNTHESE, 1970, 21 : 34 - 64
  • [36] Quantum probability from decision theory?
    Barnum, H
    Caves, CM
    Finkelstein, J
    Fuchs, CA
    Schack, R
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (1997): : 1175 - 1182
  • [37] Probability representation in quantum field theory
    Man'ko, VI
    Rosa, L
    Vitale, P
    PHYSICS LETTERS B, 1998, 439 (3-4) : 328 - 336
  • [38] Quantum mechanics and classical probability theory
    Manko, VI
    SYMMETRIES IN SCIENCE IX, 1997, : 225 - 242
  • [39] Quantum mechanics as an exotic probability theory
    Youssef, S
    MAXIMUM ENTROPY AND BAYESIAN METHODS, 1996, 79 : 237 - 244
  • [40] Quantum Mechanics and Operational Probability Theory
    E.G. Beltrametti
    S. Bugajski
    Foundations of Science, 2002, 7 (1-2) : 197 - 212