Growth dynamics and intracluster reactions in Ni+(CO2)n complexes via infrared spectroscopy

被引:63
|
作者
Walker, NR [1 ]
Walters, RS [1 ]
Grieves, GA [1 ]
Duncan, MA [1 ]
机构
[1] Univ Georgia, Dept Chem, Athens, GA 30602 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2004年 / 121卷 / 21期
关键词
D O I
10.1063/1.1806821
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ni+(CO2)(n), Ni+(CO2)(n)Ar, Ni+(CO2)(n)Ne, and Ni+(O-2)(CO2)(n) complexes are generated by laser vaporization in a pulsed supersonic expansion. The complexes are mass-selected in a reflectron time-of-flight mass spectrometer and studied by infrared resonance-enhanced photodissociation (IR-REPD) spectroscopy. Photofragmentation proceeds exclusively through the loss of intact CO2 molecules from Ni+(CO2)(n) and Ni+(O-2)(CO2)(n) complexes, and by elimination of the noble gas atom from Ni+(CO2)(n)Ar and Ni+(CO2)(n)Ne. Vibrational resonances are identified and assigned in the region of the asymmetric stretch of CO2. Small complexes have resonances that are blueshifted from the asymmetric stretch of free CO2, consistent with structures having linear Ni+-O=C=O configurations. Fragmentation of larger Ni+(CO2)(n) clusters terminates at the size of n=4, and new vibrational bands assigned to external ligands are observed for ngreater than or equal to5. These combined observations indicate that the coordination number for CO2 molecules around Ni+ is exactly four. Trends in the loss channels and spectra of Ni+(O-2)(CO2)(n) clusters suggest that each oxygen atom occupies a different coordination site around a four-coordinate metal ion in these complexes. The spectra of larger Ni+(CO2)(n) clusters provide evidence for an intracluster insertion reaction assisted by solvation, producing a metal oxide-carbonyl species as the reaction product. (C) 2004 American Institute of Physics.
引用
收藏
页码:10498 / 10507
页数:10
相关论文
共 50 条
  • [41] CO Adsorbed Infrared Spectroscopy Study of Ni/Al2O3 Catalyst for CO2 Reforming of Methane
    Xinli Zhu
    Yue-ping Zhang
    Chang-jun Liu
    Catalysis Letters, 2007, 118 : 306 - 312
  • [42] Towards and understanding of CO2 microsolvation: Microwave spectroscopy of CO2 complexes with fluoroethylenes
    Peebles, Rebecca
    Peebles, Sean
    Anderton, Ashley
    Christenholz, Cori
    Dorris, Rachel
    Trendell, William
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [43] CO adsorbed infrared spectroscopy study of Ni/Al2O3 catalyst for CO2 reforming of methane
    Zhu, Xinli
    Zhang, Yue-ping
    Liu, Chang-jun
    CATALYSIS LETTERS, 2007, 118 (3-4) : 306 - 312
  • [44] Interaction of CO2 with Atomic Manganese in the Presence of an Excess Negative Charge Probed by Infrared Spectroscopy of [Mn(CO2)n]- Clusters
    Thompson, Michael C.
    Ramsay, Jacob
    Weber, J. Mathias
    JOURNAL OF PHYSICAL CHEMISTRY A, 2017, 121 (40): : 7534 - 7542
  • [45] Infrared photodissociation spectroscopy of mass-selected Al+(CO2)n and Al+(CO2)nAr clusters
    Walters, RS
    Brinkmann, NR
    Schaefer, HF
    Duncan, MA
    JOURNAL OF PHYSICAL CHEMISTRY A, 2003, 107 (38): : 7396 - 7405
  • [46] Structural Diversity of Copper-CO2 Complexes: Infrared Spectra and Structures of [Cu(CO2)n]- Clusters
    Knurr, Benjamin J.
    Weber, J. Mathias
    JOURNAL OF PHYSICAL CHEMISTRY A, 2014, 118 (44): : 10246 - 10251
  • [47] OXIDATION OF CO TO CO2 BY NI-NO2 COMPLEXES - MECHANISTIC STUDY
    FELTHAM, RD
    KRIEGE, JC
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1979, 101 (17) : 5064 - 5065
  • [48] Reactions of manganese silyl dihydride complexes with CO2
    Price, Jeffrey S.
    Emslie, David J. H.
    POLYHEDRON, 2021, 206
  • [49] Molecular-level insights into CO2 activation on Ni(111) from in situ infrared spectroscopy
    Ben David, Roey
    Head, Ashley R.
    Lin, Senpeng
    Ben Yaacov, Adva
    Andres, Miguel A.
    Eren, Baran
    CELL REPORTS PHYSICAL SCIENCE, 2024, 5 (04):
  • [50] Organometallic CO2 complexes in supercritical CO2:: a time-resolved infrared study
    George, MW
    Grills, DC
    Sun, XZ
    Poliakoff, M
    ADVANCES IN CHEMICAL CONVERSIONS FOR MITIGATING CARBON DIOXIDE, 1998, 114 : 255 - 260