Simulation of Polyurea Shock Response under High-Velocity Microparticle Impact

被引:1
|
作者
Gorfain, Joshua E. [1 ]
Key, Christopher T. [2 ]
Veysset, David [3 ,4 ]
Nelson, Keith A. [3 ,4 ]
机构
[1] Appl Phys Sci Corp, Arlington, VA 22203 USA
[2] Appl Phys Sci Corp, Groton, CT 06340 USA
[3] MIT, Inst Soldier Nanotechnol, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] MIT, Dept Chem, Cambridge, MA 02139 USA
关键词
BEHAVIOR;
D O I
10.1063/1.5044862
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
On-going research into the complexities of polyurea behavior under shock loading has led to some breakthroughs in the predictive simulation of how this nominally soft polymer responds under high velocity impact conditions. This work expands upon a previously reported modified pressure-dependent viscoelastic constitutive model for polyurea and its performance under ballistic impact. Specifically, we present recent enhancements to the model including nonlinearites in the Hugoniot and improvements in the high-temperature viscoelastic behavior, which substantially improves accuracy and extends the model's range of applicable conditions. These improvements are demonstrated through correlation of computations for a suite of normal and pressure-shear plate impact experiments well documented in the open literature. Additionally, microparticle impact experiments were performed on polyurea using a laser-induced particle impact test (LIPIT) technique. High-speed imaging of the impact mechanics revealed elastic particle rebound at low velocity but penetration at high velocity. Simulation of these LIPIT experiments demonstrates good accuracy of the polyurea model under these conditions as well as provides insight into the mechanisms governing the results observed.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Asymmetry of Ceramic Destruction under a High-Velocity Impact
    S. A. Zelepugin
    V. F. Tolkachev
    A. S. Zelepugin
    Technical Physics Letters, 2017, 43 : 1071 - 1073
  • [22] GFRP materials under high-velocity impact loading
    Ernst, H.-J.
    Wolf, T.
    Hoog, K.
    Unckenbold, W.F.
    2000, Editions de Physique, Les Ulis Cedex A, France (10):
  • [23] Vortex structures in a ceramic under high-velocity impact
    Gorel'skii, V. A.
    Zelepugin, S. A.
    Technical Physics Letters, 23 (12):
  • [24] Behavior of strengthened glass under high-velocity impact
    Vlasov, A.S.
    Zil'berbrand, E.L.
    Kozhushko, A.A.
    Kozachuk, A.I.
    Sinani, A.B.
    Problemy Prochnosti, 2002, (03): : 82 - 85
  • [25] Vortex structures in a ceramic under high-velocity impact
    Gorel'skii, VA
    Zelepugin, SA
    TECHNICAL PHYSICS LETTERS, 1997, 23 (12) : 982 - 983
  • [26] Vortex structures in a ceramic under high-velocity impact
    V. A. Gorel’skii
    S. A. Zelepugin
    Technical Physics Letters, 1997, 23 : 982 - 983
  • [27] In situ observations of jetting in the divergent rebound regime for high-velocity metallic microparticle impact
    Sun, Yuchen
    Veysset, David
    Nelson, Keith A.
    Schuh, Christopher A.
    APPLIED PHYSICS LETTERS, 2020, 117 (13)
  • [28] PROBABILISTIC FAILURE OF CERAMICS UNDER HIGH-VELOCITY IMPACT
    Zelepugin, Sergey A.
    Tolkachev, Vladimir F.
    Zelepugin, Alexey S.
    IRF2018: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INTEGRITY-RELIABILITY-FAILURE, 2018, : 865 - 870
  • [29] GFRP materials under high-velocity impact loading
    Ernst, HJ
    Wolf, T
    Hoog, K
    Unckenbold, WF
    JOURNAL DE PHYSIQUE IV, 2000, 10 (P9): : 577 - 582
  • [30] Asymmetry of Ceramic Destruction under a High-Velocity Impact
    Zelepugin, S. A.
    Tolkachev, V. F.
    Zelepugin, A. S.
    TECHNICAL PHYSICS LETTERS, 2017, 43 (12) : 1071 - 1073