Vanadium redox flow batteries: A comprehensive review

被引:457
|
作者
Lourenssen, Kyle [1 ]
Williams, James [1 ]
Ahmadpour, Faraz [1 ]
Clemmer, Ryan [1 ]
Tasnim, Syeda [1 ]
机构
[1] Univ Guelph, Sch Engn, Guelph, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Renewable energy; Energy storage; Vanadium redox flow battery; Principles of vanadium redox flow battery; Design considerations of vanadium redox flow battery; Limitations of each component; ENERGY-STORAGE TECHNOLOGIES; ION-EXCHANGE MEMBRANES; CARBON FELT ELECTRODES; COMPOSITE BIPOLAR PLATES; 1 KW CLASS; GRAPHITE FELT; MIXED ACID; NEGATIVE ELECTRODE; NANOFILTRATION MEMBRANES; POSITIVE ELECTROLYTE;
D O I
10.1016/j.est.2019.100844
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Interest in the advancement of energy storage methods have risen as energy production trends toward renewable energy sources. Vanadium redox flow batteries (VRFB) are one of the emerging energy storage techniques being developed with the purpose of effectively storing renewable energy. There are currently a limited number of papers published addressing the design considerations of the VRFB, the limitations of each component and what has been/is being done to address said limitations. This review briefly discusses the current need and state of renewable energy production, the fundamental principles behind the VRFB, how it works and the technology restraints. The working principles of each component are highlighted and what design aspects/cues are to be considered when building a VRFB. The limiting determinants of some components are investigated along with the past/current research to address these limitations. Finally, critical research areas are highlighted along with future development recommendations.
引用
收藏
页数:17
相关论文
共 50 条
  • [22] The numerical simulation of vanadium RedOx flow batteries
    Bayanov, I. M.
    Vanhaelst, R.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2011, 49 (09) : 2013 - 2031
  • [23] Aging Studies of Vanadium Redox Flow Batteries
    Noack, J.
    Vorhauser, L.
    Pinkwart, K.
    Tuebke, J.
    BATTERY/ENERGY TECHNOLOGY (GENERAL) - 218TH ECS MEETING, 2011, 33 (39): : 3 - 9
  • [24] Membranes for all vanadium redox flow batteries
    Tempelman, C. H. L.
    Jacobs, J. F.
    Balzer, R. M.
    Degirmenci, V.
    JOURNAL OF ENERGY STORAGE, 2020, 32
  • [25] The numerical simulation of vanadium RedOx flow batteries
    I. M. Bayanov
    R. Vanhaelst
    Journal of Mathematical Chemistry, 2011, 49 : 2013 - 2031
  • [26] Thermal issues of vanadium redox flow batteries
    Ren, Jiayou
    Li, Yiju
    Wang, Zhenyu
    Sun, Jing
    Yue, Qianli
    Fan, Xinzhuang
    Zhao, Tianshou
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2023, 203
  • [27] Electrocatalysis at Electrodes for Vanadium Redox Flow Batteries
    Wu, Yuping
    Holze, Rudolf
    BATTERIES-BASEL, 2018, 4 (03):
  • [28] A Numerical Simulation of Vanadium Redox Flow Batteries
    Hasannasab, P.
    Ranjbar, A. A.
    Shakeri, M.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2019, 32 (01): : 153 - 161
  • [29] Vanadium Redox Flow Batteries: Asymptotics and Numerics
    Vynnycky, Michael
    Assuncao, Milton
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI, 2022, 39 : 365 - 371
  • [30] Nanostructured membranes for vanadium redox flow batteries
    Choi, So-Won
    Cha, Sang-Ho
    Kim, Tae-Ho
    Nanoscience and Nanotechnology - Asia, 2015, 5 (02): : 109 - 129