Graphene nanoribbons: fabrication, properties and devices

被引:185
|
作者
Celis, A. [1 ,2 ]
Nair, M. N. [2 ]
Taleb-Ibrahimi, A. [2 ]
Conrad, E. H. [3 ]
Berger, C. [3 ,4 ]
de Heer, W. A. [4 ]
Tejeda, A. [1 ,2 ]
机构
[1] Univ Paris Saclay, Univ Paris 11, CNRS, Lab Phys Solides, F-91405 Orsay, France
[2] Synchrotron SOLEIL UR1 CNRS, F-91192 Gif Sur Yvette, France
[3] Georgia Inst Technol, Atlanta, GA 30332 USA
[4] Univ Grenoble, Inst Neel CNRS, F-38042 Grenoble, France
基金
美国国家科学基金会;
关键词
graphene; nanoribbon; fabrication; devices; FIELD-EFFECT TRANSISTORS; WALLED CARBON NANOTUBES; EPITAXIAL GRAPHENE; BAND-GAP; DIRECT GROWTH; GRAPHITIC NANORIBBONS; ATOMIC-STRUCTURE; LAYER GRAPHENE; SINGLE-LAYER; SIC; 0001;
D O I
10.1088/0022-3727/49/14/143001
中图分类号
O59 [应用物理学];
学科分类号
摘要
Graphene nanoribbons are fundamental components to the development of graphene nanoelectronics. At the nanoscale, electronic confinement effects and electronic edge states become essential to the properties of graphene. These effects depend critically on the ribbon width and the nature of the ribbon edge, the control of which at the atomic scale is a major challenge. Graphene nanoribbons have been largely studied theoretically, experimentally and with the perspective of electronic applications. We review the basic properties of graphene nanoribbons and recent progress in fabrication processes, focusing on the question of the electronic gap. We examine top-down and bottom-up approaches to fabricate graphene nanoribbons by lithographic, catalytic cutting, chemical assembly and epitaxial growth methods and compare their electronic characteristics.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Electronic and transport properties of graphene nanoribbons
    Treske, Uwe
    Ortmann, Frank
    Oetzel, Bjoern
    Hannewald, Karsten
    Bechstedt, Friedhelm
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2010, 207 (02): : 304 - 308
  • [32] Transport properties of branched graphene nanoribbons
    Andriotis, Antonis N.
    Menon, Madhu
    APPLIED PHYSICS LETTERS, 2008, 92 (04)
  • [33] Electromechanical Properties of Suspended Graphene Nanoribbons
    Hod, Oded
    Scuseria, Gustavo E.
    NANO LETTERS, 2009, 9 (07) : 2619 - 2622
  • [34] Electronic and Transport Properties of Graphene Nanoribbons
    Hou, Zhufeng
    Yee, Marcus
    2007 7TH IEEE CONFERENCE ON NANOTECHNOLOGY, VOL 1-3, 2007, : 558 - 561
  • [35] Polaron Properties in Armchair Graphene Nanoribbons
    da Cunha, Wiliam F.
    Acioli, Paulo H.
    de Oliveira Neto, Pedro H.
    Gargano, Ricardo
    e Silva, Geraldo M.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2016, 120 (27): : 4893 - 4900
  • [36] Electronic Properties of Graphene Nanoribbons With Defects
    Rallis, Konstantinos
    Dimitrakis, Panagiotis
    Karafyllidis, Ioannis G.
    Rubio, Antonio
    Sirakoulis, Georgios Ch
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2021, 20 : 151 - 160
  • [37] Electronic and magnetic properties of graphene nanoribbons
    Owens, F. J.
    MOLECULAR PHYSICS, 2006, 104 (19) : 3107 - 3109
  • [38] Electronic transport properties of graphene nanoribbons
    Wakabayashi, Katsunori
    Takane, Yositake
    Yamamoto, Masayuki
    Sigrist, Manfred
    NEW JOURNAL OF PHYSICS, 2009, 11
  • [39] Electronic Properties of Armchair Graphene Nanoribbons
    Bhojani, Amit K.
    Soni, Himadri R.
    Jha, Prafulla K.
    DAE SOLID STATE PHYSICS SYMPOSIUM 2019, 2020, 2265
  • [40] Atomically precise bottom-up fabrication of graphene nanoribbons
    Cai, Jinming
    Ruffieux, Pascal
    Jaafar, Rached
    Bieri, Marco
    Braun, Thomas
    Blankenburg, Stephan
    Muoth, Matthias
    Seitsonen, Ari P.
    Saleh, Moussa
    Feng, Xinliang
    Muellen, Klaus
    Fasel, Roman
    NATURE, 2010, 466 (7305) : 470 - 473