this paper we carry on the study of asymptotic behavior of some Solutions to a singularly perturbed problem with mixed Dirichlet and Neumann boundary conditions, started in the first paper [J. Garcia Azorero, A. Malchiodi. L. Montoro, I. Peral, Concentration of solutions for some singularly perturbed mixed problems: Existence results, Arch. Ration. Mech. Anal., in press]. Here we are mainly interested in the analysis of the location and shape of least energy solutions when the singular Perturbation parameter tends to zero. We show that in many cases they coincide with the new Solutions produced in [J. Garcia Azorero. A. Malchiodi, L. Montoro. I. Peral, Concentration of solutions for some singularly perturbed mixed problems: Existence results, Arch. Ration. Mech. Anal., in press]. (C) 2009 Elsevier Masson SAS. All rights reserved.
机构:
St.-Petersburg State Polytechnic University, St. Petersburg 195220, 28, Grazhdansky pr.St.-Petersburg State Polytechnic University, St. Petersburg 195220, 28, Grazhdansky pr.
Izotova O.V.
Nazarov S.A.
论文数: 0引用数: 0
h-index: 0
机构:
Institute of Problems in Mechanical Engineering RAS, St. Petersburg 199178, 61, Bolshoi pr. V.O.St.-Petersburg State Polytechnic University, St. Petersburg 195220, 28, Grazhdansky pr.
Nazarov S.A.
Sweers G.
论文数: 0引用数: 0
h-index: 0
机构:
Universität zu Köln, Mathematisches Institut, D-50931 KölnSt.-Petersburg State Polytechnic University, St. Petersburg 195220, 28, Grazhdansky pr.