Electrochemical comparison of chemically or physically modified natural graphite anode for lithium-ion batteries

被引:0
|
作者
Shim, Joongpyo [1 ]
Lee, Hong-Ki [2 ]
Song, Byung-Ho [1 ]
机构
[1] Kunsan Natl Univ, Sch Mat & Chem Eng, Chonbuk 573791, South Korea
[2] Univ Wanju, Dept Chem Engn\, Chonbuk 565791, South Korea
关键词
lithium battery; anode; natural graphite;
D O I
10.4028/www.scientific.net/SSP.124-126.995
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Natural graphite anodes were treated by different methods to improve their cyclability. We tried following methods; heat-treatment at 550 degrees C for graphite powder, addition of carbon black for electrode and VC (vinylene carbonate) in electrolyte. All methods decreased capacity fade rate during constant cycling. The addition of carbon black decreased capacity fade significantly but increased irreversible capacity much at first cycle. Heat-treatment and VC were also effective for cycling and irreversible capacity loss.
引用
收藏
页码:995 / +
页数:2
相关论文
共 50 条
  • [41] Effect of milling on the electrochemical performance of natural graphite as an anode material for lithium-ion battery
    Wang, HY
    Ikeda, T
    Fukuda, K
    Yoshio, M
    JOURNAL OF POWER SOURCES, 1999, 83 (1-2) : 141 - 147
  • [42] Novel modified graphite as anode material for lithium ion batteries
    Pan, QM
    Guo, KK
    Wang, LZ
    Fang, SB
    JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (06) : 1833 - 1838
  • [43] Achieving High-Performance Spherical Natural Graphite Anode through a Modified Carbon Coating for Lithium-Ion Batteries
    Kwon, Hae-Jun
    Woo, Sang-Wook
    Lee, Yong-Ju
    Kim, Je-Young
    Lee, Sung-Man
    ENERGIES, 2021, 14 (07)
  • [44] Improved graphite anode for lithium-ion batteries - Chemically bonded solid electrolyte interface and nanochannel formation
    Peled, E
    Menachem, C
    BarTow, D
    Melman, A
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) : L4 - L7
  • [45] Mechanical-electrochemical modeling of silicon-graphite composite anode for lithium-ion batteries
    Chen, Yue
    Yang, Lufeng
    Guo, Fuliang
    Liu, Danna
    Wang, Huayu
    Lu, Jiaze
    Zheng, Jieyun
    Yu, Xiqian
    Li, Hong
    JOURNAL OF POWER SOURCES, 2022, 527
  • [46] Effect of pyrolytic polyacrylonitrile on electrochemical performance of Si/graphite composite anode for lithium-ion batteries
    Qingmei Zhao
    Wei Xiao
    Xuemin Yan
    Shaoxiong Qin
    Baolong Qu
    Lin Zhao
    Ionics, 2017, 23 : 1685 - 1692
  • [47] Preparation and electrochemical characterization of tin/graphite/silver composite as anode materials for lithium-ion batteries
    Wang, Xiuyan
    Wen, Zhaoyin
    Lin, Bin
    Lin, Jiu
    Wu, Xiangwei
    Xu, Xiaogang
    JOURNAL OF POWER SOURCES, 2008, 184 (02) : 508 - 512
  • [48] Synthesis and electrochemical properties of artificial graphite as an anode for high-performance lithium-ion batteries
    Ma, Canliang
    Zhao, Yun
    Li, Jin
    Song, Yan
    Shi, Jingli
    Guo, Quangui
    Liu, Lang
    CARBON, 2013, 64 : 553 - 556
  • [49] Electrochemical Performance of SnO2/ Graphite Nanocomposites as Anode Material for Lithium-Ion Batteries
    白雪君
    王彪
    程旭
    江建明
    JournalofDonghuaUniversity(EnglishEdition), 2015, 32 (03) : 379 - 383
  • [50] Effect of pyrolytic polyacrylonitrile on electrochemical performance of Si/graphite composite anode for lithium-ion batteries
    Zhao, Qingmei
    Xiao, Wei
    Yan, Xuemin
    Qin, Shaoxiong
    Qu, Baolong
    Zhao, Lin
    IONICS, 2017, 23 (07) : 1685 - 1692