Exact Solution of Random Graphs for Cluster Fragmentation

被引:0
|
作者
Nga, D. T. [1 ]
Lan, N. T. Phuong [2 ]
Nghia, D. C. [2 ]
Desesquelles, P. [3 ]
机构
[1] Vietnam Acad Sci & Technol, Inst Phys, 10 Dao Tan, Hanoi, Vietnam
[2] Hanoi Pedag Univ 2, Hanoi, Vietnam
[3] Univ Paris Sud & CSNSM CNRS, F-91405 Orsay, France
关键词
D O I
10.1088/1742-6596/537/1/012008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the exact solution of a combinatorial fragmentation model and we show how it can be used as a touchstone for the fragmentation of atomic clusters. This model, random graphs (RG), also called mean field percolation, displays a phase transition. In this model, the clusters are solely described as connected entities called nodes. The connections, called bonds, can be active of broken. We have established the algebraic formulas of the probability of all the fragmentation channels. The results depend on the number of nodes and of the number of broken bonds. Using RG, we show example where information was deduced from fragmentation of systems consisting of finite sets of nodes.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Exact solution of Random Graph fragmentation and physical, chemical and biological applications
    Desesquelles, P.
    Nga, D. -T.
    Cholet, A.
    IC-MSQUARE 2012: INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELLING IN PHYSICAL SCIENCES, 2013, 410
  • [2] AN EXACT SOLUTION OF THE FRAGMENTATION EQUATION
    WILLIAMS, MMR
    AEROSOL SCIENCE AND TECHNOLOGY, 1990, 12 (03) : 538 - 546
  • [3] Exact expectations for random graphs and assignments
    Eriksson, H
    Eriksson, K
    Sjöstrand, J
    COMBINATORICS PROBABILITY & COMPUTING, 2003, 12 (04): : 401 - 412
  • [4] Some Bounds for the Fragmentation Coefficient of Random Graphs
    Adler, Katerina
    Cohen, Reuven
    Haber, Simi
    AXIOMS, 2025, 14 (03)
  • [5] Exact and Efficient Generation of Geometric Random Variates and Random Graphs
    Bringmann, Karl
    Friedrich, Tobias
    AUTOMATA, LANGUAGES, AND PROGRAMMING, PT I, 2013, 7965 : 267 - 278
  • [6] Random Cluster Model on Regular Graphs
    Bencs, Ferenc
    Borbenyi, Marton
    Csikvari, Peter
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 399 (01) : 203 - 248
  • [7] Random Cluster Model on Regular Graphs
    Ferenc Bencs
    Márton Borbényi
    Péter Csikvári
    Communications in Mathematical Physics, 2023, 399 : 203 - 248
  • [8] General and exact approach to percolation on random graphs
    Allard, Antoine
    Hebert-Dufresne, Laurent
    Young, Jean-Gabriel
    Dube, Louis J.
    PHYSICAL REVIEW E, 2015, 92 (06)
  • [9] Exact matching of random graphs with constant correlation
    Mao, Cheng
    Rudelson, Mark
    Tikhomirov, Konstantin
    PROBABILITY THEORY AND RELATED FIELDS, 2023, 186 (1-2) : 327 - 389
  • [10] EXACT PROBABILITY DISTRIBUTION ON CONNECTIVITY OF RANDOM GRAPHS
    LING, RF
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 1975, 12 (01) : 90 - 98