Reinforcing efficiency of nanocellulose in polymers

被引:58
|
作者
Aitomaki, Yvonne [1 ]
Oksman, Kristiina [1 ]
机构
[1] Lulea Univ Technol, Composite Ctr Sweden, Div Mat Sci, S-97187 Lulea, Sweden
来源
REACTIVE & FUNCTIONAL POLYMERS | 2014年 / 85卷
关键词
Cellulose nanofibres; Model strength; Modulus; Network; BACTERIAL CELLULOSE; TENSILE-STRENGTH; HIGH TOUGHNESS; NANOCOMPOSITES; COMPOSITES; BIOCOMPOSITES; DISTRIBUTIONS; NANOFIBERS; MORPHOLOGY; NETWORK;
D O I
10.1016/j.reactfunctpolym.2014.08.010
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Nanocellulose extracted from renewable sources, is a promising reinforcement for many polymers and is a material where strong interfibre hydrogen bonds add effects not seen in microfiber composites. Presented is a tool for comparing different nanocellulose composites based on estimating the efficiency of nanocellulose reinforcement. A reinforcing efficiency factor is calculated from reported values of elastic modulus and strength from various nanocellulose composites using established micromechanical models. In addition, for the strength, a network model is derived based on fibre-fibre bond strength within nanocellulose networks. The strength results highlight the importance of the plastic deformation in the nanocellulose composites. Both modulus and strength efficiency show that the network strength and modulus has a greater effect than that of the individual constituents. In the best cases, nanocellulose reinforcement exceeds all model predictions. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:151 / 156
页数:6
相关论文
共 50 条
  • [21] Effect of fibre connectivity on reinforcing efficiency
    Karenlampi, P.
    Journal of Pulp and Paper Science, 1996, 22 (01):
  • [22] The effect of fibre connectivity on reinforcing efficiency
    Karenlampi, P
    JOURNAL OF PULP AND PAPER SCIENCE, 1996, 22 (01): : J31 - J37
  • [23] Dewatering of nanocellulose dispersions: Efficiency and property preservation
    Henriksson, Marielle
    Fall, Andreas
    Hakansson, Karl
    Karppinen, Anni
    Heggset, Ellinor
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [24] Using in situ nanocellulose-coating technology based on dynamic bacterial cultures for upgrading conventional biomedical materials and reinforcing nanocellulose hydrogels
    Zhang, Peng
    Chen, Lin
    Zhang, Qingsong
    Jonsson, Leif J.
    Hong, Feng F.
    BIOTECHNOLOGY PROGRESS, 2016, 32 (04) : 1077 - 1084
  • [25] Comparison of Acid-hydrolyzed and TEMPO-oxidized Nanocellulose for Reinforcing Alginate Fibers
    Shen, Xiao-Jun
    Huang, Pan-Li
    Chen, Jing-Huan
    Wu, Yu-Ying
    Liu, Qiu-Yun
    Sun, Run-Cang
    BIORESOURCES, 2017, 12 (04): : 8180 - 8198
  • [26] Coconut husk-derived nanocellulose as reinforcing additives in thermal-responsive hydrogels
    Leow, Yihao
    Boo, Yi Jian
    Lin, Ming
    Tan, Ying Chuan
    Goh, Rubayn Zhi Rong
    Zhu, Qiang
    Loh, Xian Jun
    Xue, Kun
    Kai, Dan
    CARBOHYDRATE POLYMERS, 2024, 323
  • [27] Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites
    Kargarzadeh, H.
    Huang, J.
    Lin, N.
    Ahmad, I.
    Mariano, M.
    Dufresne, A.
    Thomas, S.
    Galeski, Andrzej
    PROGRESS IN POLYMER SCIENCE, 2018, 87 : 197 - 227
  • [28] SELF-REINFORCING LIQUID-CRYSTAL POLYMERS
    DORBON, M
    DAWANS, F
    REVUE DE L INSTITUT FRANCAIS DU PETROLE, 1985, 40 (05): : 625 - 634
  • [29] Electron beam surface modifications in reinforcing and recycling of polymers
    Czvikovszky, T
    Hargitai, H
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1997, 131 (1-4): : 300 - 304
  • [30] Self-Reinforcing Polymers - A New Type of Biomaterials
    Ehrmann, Katharina
    Fitzka, Markus
    Berk, Oskar
    Liska, Robert
    Baudis, Stefan
    TISSUE ENGINEERING PART A, 2023, 29 (13-14)