Bicepstrum based blind identification of the acoustic emission (AE) signal in precision turning

被引:24
|
作者
Iturrospe, A
Dornfeld, D
Atxa, V
Abete, JM
机构
[1] Mondragon, Mondragon Goi Eskola Polikeknikoa, Arrasate Mondragon 20500, Spain
[2] Univ Calif Berkeley, Dept Engn Mech, Berkeley, CA 94720 USA
关键词
acoustic emissions; higher-order statistics; blind identification; precision machining;
D O I
10.1016/j.ymssp.2003.12.006
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
It is believed that the acoustic emissions (AE) signal contains potentially valuable information for monitoring precision cutting processes, as well as to be employed as a control feedback signal. However, AE stress waves produced in the cutting zone are distorted by the transmission path and the measurement systems. In this article, a bicepstrum based blind system identification technique is proposed as a valid tool for estimating both, transmission path and sensor impulse response. Assumptions under which application of bicepstrum is valid are discussed and diamond turning experiments are presented, which demonstrate the feasibility of employing bicepstrum for AE blind identification. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:447 / 466
页数:20
相关论文
共 50 条
  • [41] Signal-based acoustic emission techniques in civil engineering
    Grosse, CU
    Reinhardt, HW
    Finck, F
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2003, 15 (03) : 274 - 279
  • [42] Identification of tool wear using acoustic emission signal and machine learning methods
    Twardowski, Pawel
    Tabaszewski, Maciej
    Wiciak-Pikula, Martyna
    Felusiak-Czyryca, Agata
    PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2021, 72 : 738 - 744
  • [43] Precision Spraying System of Crops Disease Stress Based on Acoustic Emission
    You, Guodong
    Wang, Xiuqing
    Yang, Shifeng
    Wang, Dejin
    JOURNAL OF COMPUTERS, 2011, 6 (04) : 635 - 642
  • [44] Anisotropy monitoring of ultra-precision grinding force and acoustic emission signal of monocrystalline sapphire
    Wang, Xingyu
    Zheng, Wen
    Bao, Xiaoyu
    Zhao, Qingliang
    MEASUREMENT, 2025, 247
  • [45] Acoustic emission signal identification of different rocks based on SE-1DCNN-BLSTM network model
    WANG Weihua
    WANG Tingting
    Global Geology, 2024, 27 (01) : 43 - 55
  • [46] Study On corrosion Acoustic Emission Separation Based On Blind Source Separation
    Yu, Yang
    Zhou, Xiang
    FRONTIERS OF MANUFACTURING SCIENCE AND MEASURING TECHNOLOGY II, PTS 1 AND 2, 2012, 503-504 : 1597 - 1600
  • [47] Damage evolution in wood - pattern recognition based on acoustic emission (AE) frequency spectra
    Baensch, Franziska
    Sause, Markus G. R.
    Brunner, Andreas J.
    Niemz, Peter
    HOLZFORSCHUNG, 2015, 69 (03) : 357 - 365
  • [48] Flow noise identification using acoustic emission (AE) energy decomposition for sand monitoring in flow pipeline
    Droubi, M. G.
    Reuben, R. L.
    Steel, J. I.
    APPLIED ACOUSTICS, 2018, 131 : 5 - 15
  • [49] The computer measuring system of acoustic emission signal 8AE-PD dedicated for partial discharges investigation
    Witos, Franciszek
    Szerszen, Grzegorz
    Setkiewicz, Maciej
    Opilski, Zbigniew
    Gacek, Zbigniew
    Urbanczyk, Marian
    PRZEGLAD ELEKTROTECHNICZNY, 2012, 88 (11B): : 146 - 149
  • [50] Development of Acoustic Emission (AE) based defect parameters for slow rotating roller bearings
    Nienhaus, K.
    Boos, F. D.
    Garate, K.
    Baltes, R.
    25TH INTERNATIONAL CONGRESS ON CONDITION MONITORING AND DIAGNOSTIC ENGINEERING (COMADEM 2012), 2012, 364