Subcodes constructed from bases of Reed-Solomon codes

被引:0
|
作者
Fuwa, S [1 ]
Tanabe, H [1 ]
Umeda, H [1 ]
机构
[1] Fukui Univ, Fac Engn, Fukui 9108507, Japan
关键词
RS code; idempotent element; minimum squared Euclidean distance; trellis diagram; iterative decoder;
D O I
10.1002/ecja.1170
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a method of constructing non-linear cyclic codes that form an additive group for which the decoding complexity or error correcting performance is improved relative to RS codes, which are typical linear cyclic codes. First, a code with information digit count k = 1 is constructed by using multiple RS code basis vectors obtained from Galois field Fourier transforms. Then, for k 1, codes are constructed from this code by using idempotent elements. Also, a code with code length n = 7 was constructed as an example, and both its minimal trellis diagram complexity and bit error rate on the AWGN channel due to a computer simulation were shown to be excellent. In addition, an iterative decoder was applied to the codes with k = 4 and 5, which had peak trellis diagram complexity, and it was shown that the decoding complexity could be reduced. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:64 / 73
页数:10
相关论文
共 50 条
  • [21] Repairing Reed-Solomon Codes
    Guruswami, Venkatesan
    Wootters, Mary
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (09) : 5684 - 5698
  • [22] Twisted Reed-Solomon Codes
    Beelen, Peter
    Puchinger, Sven
    Rosenkilde, Johan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (05) : 3047 - 3061
  • [23] Quantum Reed-Solomon codes
    Grassl, M
    Geiselmann, W
    Beth, T
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 1999, 1719 : 231 - 244
  • [24] Twisted Reed-Solomon Codes
    Beelen, Peter
    Puchinger, Sven
    Nielsen, Johan Rosenkilde Ne
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 336 - 340
  • [25] Application of Grobner bases for decoding Reed-Solomon codes used on CDs
    Reed, IS
    He, R
    Chen, X
    Truong, TK
    IEE PROCEEDINGS-COMPUTERS AND DIGITAL TECHNIQUES, 1998, 145 (06): : 369 - 376
  • [26] A note on good permutation codes from Reed-Solomon codes
    Sobhani, R.
    Abdollahi, A.
    Bagherian, J.
    Khatami, M.
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (10) : 2335 - 2340
  • [27] Graph codes with Reed-Solomon component codes
    Hoholdt, Tom
    Justesen, Jorn
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 2022 - +
  • [28] On the concatenation of turbo codes and Reed-Solomon codes
    Zhou, GC
    Lin, TS
    Wang, WZ
    Lindsey, WC
    Lai, D
    Chen, E
    Santoru, J
    2003 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-5: NEW FRONTIERS IN TELECOMMUNICATIONS, 2003, : 2134 - 2138
  • [29] MATRIX FORMALISM OF THE REED-SOLOMON CODES
    Marov, A., V
    Uteshev, A. Yu
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2016, 12 (04): : 4 - 17
  • [30] On error distance of Reed-Solomon codes
    YuJuan Li
    DaQing Wan
    Science in China Series A: Mathematics, 2008, 51 : 1982 - 1988