Modulating the d-band center of boron doped single-atom sites to boost the oxygen reduction reaction

被引:137
|
作者
Sun, He [1 ]
Wang, Mengfan [2 ]
Du, Xinchuan [1 ]
Jiao, Yu [3 ]
Liu, Sisi [2 ]
Qian, Tao [2 ]
Yan, Yichao [1 ]
Liu, Chen [4 ]
Liao, Min [4 ]
Zhang, Qinghua [5 ]
Meng, Linxing [2 ]
Gu, Lin [5 ]
Xiong, Jie [1 ]
Yan, Chenglin [2 ]
机构
[1] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Sichuan, Peoples R China
[2] Soochow Univ, Key Lab Adv Carbon Mat & Wearable Energy Technol, Key Lab Modern Opt Technol Educ,Minist China, Key Lab Adv Opt Mfg Technol Jiangsu Prov,Coll Ene, Suzhou 215006, Peoples R China
[3] Xichang Coll, Sch Appl & Chem Engn, Xichang 615053, Peoples R China
[4] Xiangtan Univ, Sch Mat Sci & Engn, Hunan Prov Key Lab Thin Film Mat & Devices, Xiangtan 411105, Peoples R China
[5] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
TRANSITION-METALS; ELECTROCATALYST; CATALYSTS; CARBONS;
D O I
10.1039/c9ta06949f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of oxygen reduction reaction (ORR) catalysts with low overpotential is highly desirable but proves to be challenging. One promising way to improve the catalytic activity is to modulate the electronic structure of the catalyst; however, its impact on the intermediate adsorption kinetics remains poorly understood. Herein, a boron dopant was firstly reported to modulate the d-band center of a single-atom catalyst, enabling favorable adsorption kinetics and thus improved ORR performance. The optimized catalyst outperforms pure Fe-N-C and commercial Pt/ C in a 0.1 M KOH medium, showing a half-wave potential of 0.933 V versus the reversible hydrogen electrode (vs. RHE) and ranking at the top of nonprecious metal catalysts. First-principles calculations indicate the increased valence electrons and decreased magnetic moment of single-atom sites after B-doping. The modulated d-band center provides the system with favorable adsorption energy of oxygen and a much lower overpotential, thus greatly boosting the ORR performance.
引用
收藏
页码:20952 / 20957
页数:6
相关论文
共 50 条
  • [41] Engineering d-band center of FeN4 moieties for efficient oxygen reduction reaction electrocatalysts
    Li, Zheng
    Tian, Zhongliang
    Cheng, Hao
    Wang, Tao
    Zhang, Wei
    Lu, Yao
    Lai, Yanqing
    He, Guanjie
    ENERGY STORAGE MATERIALS, 2023, 59
  • [42] Coordination environment engineering of single-atom catalysts for the oxygen reduction reaction
    Zhang, Ying
    Wen, Zi
    Li, Jian
    Yang, Chun Cheng
    Jiang, Qing
    MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (17) : 3595 - 3624
  • [43] Enhancing Oxygen Reduction Reaction of Single-Atom Catalysts by Structure Tuning
    Song, Kexin
    Jing, Haifeng
    Yang, Binbin
    Shao, Jing
    Tao, Youkun
    Zhang, Wei
    CHEMSUSCHEM, 2025, 18 (02)
  • [44] Coordination Engineering of Single-Atom Catalysts for the Oxygen Reduction Reaction: A Review
    Zhang, Jincheng
    Yang, Hongbin
    Liu, Bin
    ADVANCED ENERGY MATERIALS, 2021, 11 (03)
  • [45] Constructing single-atom Fe sites into defective carbon for efficient oxygen reduction
    Gu, Jianan
    Zuo, Shouwei
    Ren, Yuanfu
    Li, Meicheng
    Zhang, Huabin
    CHEM CATALYSIS, 2024, 4 (06):
  • [46] Modulating d-Band center of iron oxide via interfacial oxygen vacancies engineering for boosting electrocatalytic nitrogen reduction
    Liu, Sixia
    Zhang, Xiaobo
    Wang, Nidu
    Karimov, Nagimovich
    Wang, Yujie
    Gao, Zihan
    Wang, Dongguang
    Zhu, Baikang
    Gao, Shuying
    Yang, Fu
    MOLECULAR CATALYSIS, 2025, 578
  • [47] Engineering single-atom Fe-N active sites on hollow carbon spheres for oxygen reduction reaction
    Ribeiro, Rui S.
    Vieira, Ana Luisa S.
    Biernacki, Krzysztof
    Magalhaes, Alexandre L.
    Delgado, Juan J.
    Morais, Rafael G.
    Rey-Raap, Natalia
    Rocha, Raquel P.
    Pereira, M. Fernando R.
    CARBON, 2023, 213
  • [48] Fine-Tuning the d-Band Center Position of Zinc to Increase the Anti-Tumor Activity of Single-Atom Nanozymes
    Hao, Lin
    Liang, Xing-jie
    Zhang, Yawen
    Zhang, Zijing
    Han, Yu
    Jin, Yi
    Li, Luwei
    Magrini, Andrea
    Bottini, Massimo
    Gao, Shutao
    Zhang, Jinchao
    ADVANCED MATERIALS, 2024, 36 (48)
  • [49] A review of advancements in theoretical simulation of oxygen reduction reaction and oxygen evolution reaction single-atom catalysts
    Ma, Ninggui
    Xiong, Yu
    Wang, Yuhang
    Zhang, Yaqin
    Wang, Qianqian
    Luo, Shuang
    Zhao, Jun
    Huang, Changxiong
    Fan, Jun
    MATERIALS TODAY SUSTAINABILITY, 2024, 27
  • [50] Tuning d-Band Center of Pt by PtCo-PtSn Heterostructure for Enhanced Oxygen Reduction Reaction Performance
    Chen, Jinli
    Qian, Guangfu
    Chu, Bingxian
    Jiang, Zexing
    Tan, Kexin
    Luo, Lin
    Li, Bin
    Yin, Shibin
    SMALL, 2022, 18 (12)