Dynamic Attention Network for Multi-UAV Reinforcement Learning

被引:0
|
作者
Xu, Dongsheng [1 ]
Wu, Shang [1 ]
机构
[1] Natl Univ Def Technol, Sci & Technol Parallel & Distributed Proc Lab, Coll Comp, Changsha, Hunan, Peoples R China
关键词
MADDPG; Transfer learning; Attention; Reinforcement learning; LEVEL;
D O I
10.1117/12.2626437
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent methods for multi-agent reinforcement learning problems make use of Deep Neural Networks and provide stateof-the-art performance with dedicated neural network architectures and comprehensive training tricks. However, these deep reinforcement learning methods suffer from reproducibility issues, especially in transfer learning. Since the fixed size of the network input, it is difficult for the existing network structure to transfer the strategies learned from a small scale to a large scale. We argue that proper network architecture design is crucial to the cross-scale reinforcement transfer learning. In this paper, we use transfer training with attention network to solve multi-agent combat problems from aerial unmanned aerial vehicle (UAV) combat scenarios, and extend the small-scale learning to large-scale complex scenarios. We combine the attention neural network with the MADDPG algorithm to process the agent observation. It started training from a small-scale multi-UAV combat scenario and gradually increases the number of UAV. The experimental results show that methods for multi-agent UAV combat problems trained by attention transfer learning can achieve the target performance faster and provide better performance than the method without attention transfer learning.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Multi-UAV Path Planning for Wireless Data Harvesting With Deep Reinforcement Learning
    Bayerlein, Harald
    Theile, Mirco
    Caccamo, Marco
    Gesbert, David
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2021, 2 : 1171 - 1187
  • [32] Multi-UAV Navigation for Partially Observable Communication Coverage by Graph Reinforcement Learning
    Ye, Zhenhui
    Wang, Ke
    Chen, Yining
    Jiang, Xiaohong
    Song, Guanghua
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (07) : 4056 - 4069
  • [33] Optimal formation tracking control based on reinforcement learning for multi-UAV systems
    Wang, Weizhen
    Chen, Xin
    Jia, Jiangbo
    Wu, Kaili
    Xie, Mingyang
    CONTROL ENGINEERING PRACTICE, 2023, 141
  • [34] Multi-UAV Assisted Offloading Optimization: A Game Combined Reinforcement Learning Approach
    Gao, Ang
    Wang, Qi
    Chen, Kaiyue
    Liang, Wei
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (08) : 2629 - 2633
  • [35] Reinforcement Learning based Approach for Multi-UAV Cooperative Searching in Unknown Environments
    Yue, Wei
    Guan, Xianhe
    Xi, Yun
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 2018 - 2023
  • [36] Transformer-Based Reinforcement Learning for Scalable Multi-UAV Area Coverage
    Chen, Dezhi
    Qi, Qi
    Fu, Qianlong
    Wang, Jingyu
    Liao, Jianxin
    Han, Zhu
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (08) : 10062 - 10077
  • [37] Multi-UAV Trajectory Design and Power Control Based on Deep Reinforcement Learning
    Zhang C.Y.
    Liang S.Y.
    He C.L.
    Wang K.Z.
    Journal of Communications and Information Networks, 2022, 7 (02): : 192 - 201
  • [38] Multi-Agent Deep Reinforcement Learning for Full-Duplex Multi-UAV Networks
    Dai, Chen
    Zhu, Kun
    Hossain, Ekram
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 2232 - 2237
  • [39] Joint Task Offloading and Resource Allocation in Multi-UAV Multi-Server Systems: An Attention-Based Deep Reinforcement Learning Approach
    Wu, Guohua
    Liu, Zelin
    Fan, Mingfeng
    Wu, Keyu
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (08) : 11964 - 11978
  • [40] Multi-UAV simultaneous target assignment and path planning based on deep reinforcement learning in dynamic multiple obstacles environments
    Kong, Xiaoran
    Zhou, Yatong
    Li, Zhe
    Wang, Shaohai
    FRONTIERS IN NEUROROBOTICS, 2024, 17