Artificial intelligence applied to musculoskeletal oncology: a systematic review

被引:16
|
作者
Li, Matthew D. [1 ,2 ]
Ahmed, Syed Rakin [2 ,3 ,4 ]
Choy, Edwin [5 ]
Lozano-Calderon, Santiago A. [6 ]
Kalpathy-Cramer, Jayashree [2 ]
Chang, Connie Y. [1 ]
机构
[1] Harvard Med Sch, Massachusetts Gen Hosp, Dept Radiol, Div Musculoskeletal Imaging & Intervent, Boston, MA 02115 USA
[2] Harvard Med Sch, Massachusetts Gen Hosp, Dept Radiol, Athinoula A Martinos Ctr Biomed Imaging, Boston, MA 02115 USA
[3] Harvard Univ, Harvard Med Sch, Harvard Grad Program Biophys, Cambridge, MA 02138 USA
[4] Dartmouth Coll, Geisel Sch Med Dartmouth, Hanover, NH 03755 USA
[5] Harvard Med Sch, Massachusetts Gen Hosp, Dept Med, Div Hematol Oncol, Boston, MA 02115 USA
[6] Harvard Med Sch, Massachusetts Gen Hosp, Dept Orthoped Surg, Boston, MA 02115 USA
关键词
Artificial intelligence; Deep learning; Machine learning; Musculoskeletal oncology; Radiology; Pathology; Orthopedic oncology; Radiation oncology; BONE; DIAGNOSIS;
D O I
10.1007/s00256-021-03820-w
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Developments in artificial intelligence have the potential to improve the care of patients with musculoskeletal tumors. We performed a systematic review of the published scientific literature to identify the current state of the art of artificial intelligence applied to musculoskeletal oncology, including both primary and metastatic tumors, and across the radiology, nuclear medicine, pathology, clinical research, and molecular biology literature. Through this search, we identified 252 primary research articles, of which 58 used deep learning and 194 used other machine learning techniques. Articles involving deep learning have mostly involved bone scintigraphy, histopathology, and radiologic imaging. Articles involving other machine learning techniques have mostly involved transcriptomic analyses, radiomics, and clinical outcome prediction models using medical records. These articles predominantly present proof-of-concept work, other than the automated bone scan index for bone metastasis quantification, which has translated to clinical workflows in some regions. We systematically review and discuss this literature, highlight opportunities for multidisciplinary collaboration, and identify potentially clinically useful topics with a relative paucity of research attention. Musculoskeletal oncology is an inherently multidisciplinary field, and future research will need to integrate and synthesize noisy siloed data from across clinical, imaging, and molecular datasets. Building the data infrastructure for collaboration will help to accelerate progress towards making artificial intelligence truly useful in musculoskeletal oncology.
引用
收藏
页码:245 / 256
页数:12
相关论文
共 50 条
  • [31] Artificial Intelligence in Oncology
    Liebovitz, David
    Perkins, Randa M.
    Riaz, Irbaz
    Stetson, Peter D.
    JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2024, 22
  • [32] Artificial Intelligence and Oncology
    Geynisman, Daniel M.
    JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2024, 22 (05): : 277 - 277
  • [33] Artificial Intelligence in Oncology
    Jeziorski, Krzysztof
    Olszewski, Robert
    APPLIED SCIENCES-BASEL, 2025, 15 (01):
  • [34] Artificial intelligence in oncology
    Shimizu, Hideyuki
    Nakayama, Keiichi I.
    CANCER SCIENCE, 2020, 111 (05) : 1452 - 1460
  • [35] Artificial intelligence in musculoskeletal conditions
    Roman-Belmonte, Juan M.
    De la Corte-Rodriguez, Hortensia
    Carlos Rodriguez-Merchan, Emerito
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2021, 26 (11): : 1340 - 1348
  • [36] Artificial intelligence applied to support medical decisions for the automatic analysis of echocardiogram images: A systematic review
    de Siqueira, Vilson Soares
    Borges, Moises Marcos
    Furtado, Rogerio Gomes
    Dourado, Colandy Nunes
    da Costa, Ronaldo Martins
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 120
  • [37] Artificial intelligence and virtual reality applied to the clinical care of women with schizophrenia: A systematic review.
    Paolini San Miguel, J. P.
    Natividad, M.
    Seeman, M. V.
    Palacios, B.
    Balague, A.
    Roman, E.
    Bague, N.
    Izquierdo, E.
    Cachinero, H.
    Monreal, J. A.
    Gonzalez Rodriguez, A.
    EUROPEAN PSYCHIATRY, 2024, 67 : S734 - S735
  • [38] Artificial intelligence in musculoskeletal rehabilitation
    Soer, Remko
    JOURNAL OF BACK AND MUSCULOSKELETAL REHABILITATION, 2023, 36 (05) : 993 - 994
  • [39] Energy Intelligence: A Systematic Review of Artificial Intelligence for Energy Management
    Safari, Ashkan
    Daneshvar, Mohammadreza
    Anvari-Moghaddam, Amjad
    APPLIED SCIENCES-BASEL, 2024, 14 (23):
  • [40] Artificial intelligence applied to image-guided radiation therapy (IGRT): a systematic review by the Young Group of the Italian Association of Radiotherapy and Clinical Oncology (yAIRO)
    Boldrini, Luca
    D'Aviero, Andrea
    De Felice, Francesca
    Desideri, Isacco
    Grassi, Roberta
    Greco, Carlo
    Iorio, Giuseppe Carlo
    Nardone, Valerio
    Piras, Antonio
    Salvestrini, Viola
    RADIOLOGIA MEDICA, 2024, 129 (01): : 133 - 151