Artificial intelligence applied to musculoskeletal oncology: a systematic review

被引:16
|
作者
Li, Matthew D. [1 ,2 ]
Ahmed, Syed Rakin [2 ,3 ,4 ]
Choy, Edwin [5 ]
Lozano-Calderon, Santiago A. [6 ]
Kalpathy-Cramer, Jayashree [2 ]
Chang, Connie Y. [1 ]
机构
[1] Harvard Med Sch, Massachusetts Gen Hosp, Dept Radiol, Div Musculoskeletal Imaging & Intervent, Boston, MA 02115 USA
[2] Harvard Med Sch, Massachusetts Gen Hosp, Dept Radiol, Athinoula A Martinos Ctr Biomed Imaging, Boston, MA 02115 USA
[3] Harvard Univ, Harvard Med Sch, Harvard Grad Program Biophys, Cambridge, MA 02138 USA
[4] Dartmouth Coll, Geisel Sch Med Dartmouth, Hanover, NH 03755 USA
[5] Harvard Med Sch, Massachusetts Gen Hosp, Dept Med, Div Hematol Oncol, Boston, MA 02115 USA
[6] Harvard Med Sch, Massachusetts Gen Hosp, Dept Orthoped Surg, Boston, MA 02115 USA
关键词
Artificial intelligence; Deep learning; Machine learning; Musculoskeletal oncology; Radiology; Pathology; Orthopedic oncology; Radiation oncology; BONE; DIAGNOSIS;
D O I
10.1007/s00256-021-03820-w
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Developments in artificial intelligence have the potential to improve the care of patients with musculoskeletal tumors. We performed a systematic review of the published scientific literature to identify the current state of the art of artificial intelligence applied to musculoskeletal oncology, including both primary and metastatic tumors, and across the radiology, nuclear medicine, pathology, clinical research, and molecular biology literature. Through this search, we identified 252 primary research articles, of which 58 used deep learning and 194 used other machine learning techniques. Articles involving deep learning have mostly involved bone scintigraphy, histopathology, and radiologic imaging. Articles involving other machine learning techniques have mostly involved transcriptomic analyses, radiomics, and clinical outcome prediction models using medical records. These articles predominantly present proof-of-concept work, other than the automated bone scan index for bone metastasis quantification, which has translated to clinical workflows in some regions. We systematically review and discuss this literature, highlight opportunities for multidisciplinary collaboration, and identify potentially clinically useful topics with a relative paucity of research attention. Musculoskeletal oncology is an inherently multidisciplinary field, and future research will need to integrate and synthesize noisy siloed data from across clinical, imaging, and molecular datasets. Building the data infrastructure for collaboration will help to accelerate progress towards making artificial intelligence truly useful in musculoskeletal oncology.
引用
收藏
页码:245 / 256
页数:12
相关论文
共 50 条
  • [1] Artificial intelligence applied to musculoskeletal oncology: a systematic review
    Matthew D. Li
    Syed Rakin Ahmed
    Edwin Choy
    Santiago A. Lozano-Calderon
    Jayashree Kalpathy-Cramer
    Connie Y. Chang
    Skeletal Radiology, 2022, 51 : 245 - 256
  • [2] Role of artificial intelligence applied to ultrasound in gynecology oncology: A systematic review
    Moro, Francesca
    Ciancia, Marianna
    Zace, Drieda
    Vagni, Marica
    Tran, Huong Elena
    Giudice, Maria Teresa
    Zoccoli, Sofia Gambigliani
    Mascilini, Floriana
    Ciccarone, Francesca
    Boldrini, Luca
    D'Antonio, Francesco
    Scambia, Giovanni
    Testa, Antonia Carla
    INTERNATIONAL JOURNAL OF CANCER, 2024, 155 (10) : 1832 - 1845
  • [3] SYSTEMATIC REVIEW OF ARTIFICIAL INTELLIGENCE USE IN ONCOLOGY
    Phillips, Ruth
    Bradley, Sarah
    Jani, Janvi
    ONCOLOGY NURSING FORUM, 2024, 51 (02)
  • [4] Applications of Artificial Intelligence in Pediatric Oncology: A Systematic Review
    Ramesh, Siddhi
    Chokkara, Sukarn
    Shen, Timothy
    Major, Ajay
    Volchenboum, Samuel L.
    Mayampurath, Anoop
    Applebaum, Mark A.
    JCO CLINICAL CANCER INFORMATICS, 2021, 5 : 1208 - 1219
  • [5] Artificial intelligence in musculoskeletal oncology imaging: A critical review of current applications
    Lacroix, Maxime
    Aouad, Theodore
    Feydy, Jean
    Biau, David
    Larousserieb, Frederique
    Fournier, Laure
    Feydy, Antoine
    DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2023, 104 (01) : 18 - 23
  • [6] The use of artificial intelligence in musculoskeletal ultrasound: a systematic review of the literature
    Getzmann, Jonas M.
    Zantonelli, Giulia
    Messina, Carmelo
    Albano, Domenico
    Serpi, Francesca
    Gitto, Salvatore
    Sconfienza, Luca Maria
    RADIOLOGIA MEDICA, 2024, 129 (09): : 1405 - 1411
  • [7] Artificial intelligence applied to radiation oncology
    Bibault, J. -E.
    Burgun, A.
    Giraud, P.
    CANCER RADIOTHERAPIE, 2017, 21 (03): : 256 - +
  • [8] Artificial intelligence for decision support in surgical oncology - a systematic review
    Wagner, Martin
    Schulze, Andre
    Haselbeck-Kobler, Michael
    Probst, Pascal
    Brandenburg, Johanna M.
    Kalkum, Eva
    Majlesara, Ali
    Ramouz, Ali
    Klotz, Rosa
    Nickel, Felix
    Marz, Keno
    Bodenstedt, Sebastian
    Dugas, Martin
    Maier-Hein, Lena
    Mehrabi, Arianeb
    Speidel, Stefanie
    Buchler, Markus W.
    Mueller-Stich, Beat Peter
    ARTIFICIAL INTELLIGENCE SURGERY, 2022, 2 (03): : 159 - 172
  • [9] A systematic review on artificial intelligence models applied to prediction in finance
    Hijazi, Otman
    Tikito, Kawtar
    Ouazzani-Touhami, Khadija
    2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 183 - 188
  • [10] Artificial Intelligence Tools Applied to Education: A Systematic Literature Review
    Yerbabuena Torres, Carlos Fernando
    Villagomez Cabezas, Alexandra Valeria
    Yerbabuena Torres, Ana Rocío
    Mendoza Torres, Nathalie Abigail
    International Journal of Interactive Mobile Technologies, 2024, 18 (24) : 155 - 174