Note on functional iteration technique for M/G/1 type Markov chains

被引:3
|
作者
Rhee, Noah H. [1 ]
机构
[1] Univ Missouri, Dept Math & Stat, Kansas City, MO 64110 USA
关键词
Stochastic matrices; Minimal nonnegative solution; Markov chains; Iterative methods; Mean asymptotic convergence rate;
D O I
10.1016/j.laa.2009.10.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A thorough theoretical explanation of the numerical behaviour of functional iteration methods for the computation of the minimal nonnegative solution G of the matrix equation X = Sigma(infinity)(i=0)X(i)A(i), arising in the numerical solution of M/G/1 type Markov chains, is given in Meini (1997) [2]. In this note we add some more results. In particular, we show that an upper bound of the mean asymptotic convergence rate of the best functional iteration method is given in terms of the second largest modulus eigenvalue of G. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1042 / 1048
页数:7
相关论文
共 50 条
  • [31] LIGHT-TAILED ASYMPTOTICS OF GI/G/1-TYPE MARKOV CHAINS
    Kimura, Tatsuaki
    Masuyama, Hiroyuki
    Takahashi, Yutaka
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2017, 13 (04) : 2093 - 2146
  • [32] Subexponential Asymptotics of the Stationary Distributions of GI/G/1-Type Markov Chains
    Kimura, Tatsuaki
    Masuyama, Hiroyuki
    Takahashi, Yutaka
    STOCHASTIC MODELS, 2013, 29 (02) : 190 - 239
  • [33] Matrix geometric solutions in M/G/1 type Markov chains with multiple boundaries: A generalized state-space approach
    Akar, N
    Sohraby, K
    TELETRAFFIC CONTRIBUTIONS FOR THE INFORMATION AGE, 1997, 2 : 487 - 496
  • [34] Level-phase independence for GI/M/1-type Markov chains
    Latouche, G
    Taylor, PF
    JOURNAL OF APPLIED PROBABILITY, 2000, 37 (04) : 984 - 998
  • [35] Deviation matrix and asymptotic variance for GI/M/1-type Markov chains
    Liu, Yuanyuan
    Wang, Pengfei
    Xie, Yanmin
    FRONTIERS OF MATHEMATICS IN CHINA, 2014, 9 (04) : 863 - 880
  • [36] A new algorithm for computing the rate matrix of GI/M/1 type Markov chains
    Alfa, AS
    Sengupta, B
    Takine, T
    Xue, JG
    MATRIX-ANALYTIC METHODS:THEORY AND APPLICATIONS, 2002, : 1 - 16
  • [37] Deviation matrix and asymptotic variance for GI/M/1-type Markov chains
    Yuanyuan Liu
    Pengfei Wang
    Yanmin Xie
    Frontiers of Mathematics in China, 2014, 9 : 863 - 880
  • [38] Logarithmic Asymptotics for the GI/G/1-type Markov Chains and their Applications to the BMAP/G/1 Queue with Vacations
    Tai, Yongming
    He, Qi-Ming
    INFOR, 2013, 51 (02) : 92 - 102
  • [39] Combined M/G/1-G/M/1 type structured chains: A simple algorithmic solution and applications
    Jafari, R
    Sohraby, K
    IEEE INFOCOM 2001: THE CONFERENCE ON COMPUTER COMMUNICATIONS, VOLS 1-3, PROCEEDINGS: TWENTY YEARS INTO THE COMMUNICATIONS ODYSSEY, 2001, : 1065 - 1074
  • [40] Matrix-geometric solutions of M/G/1-Type Markov chains: A unifying generalized state-space approach
    Akar, N
    Oguz, NC
    Sohraby, K
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 1998, 16 (05) : 626 - 639