Obstructions to the integrability of VB-algebroids
被引:4
|
作者:
Cabrera, Alejandro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Inst Matemat, Av Athos da Silveira Ramos 149, BR-21941909 Rio De Janeiro, RJ, BrazilUniv Fed Rio de Janeiro, Inst Matemat, Av Athos da Silveira Ramos 149, BR-21941909 Rio De Janeiro, RJ, Brazil
Cabrera, Alejandro
[1
]
Brahic, Olivier
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Parana, Dept Matemat, BR-81531980 Curitiba, Parana, BrazilUniv Fed Rio de Janeiro, Inst Matemat, Av Athos da Silveira Ramos 149, BR-21941909 Rio De Janeiro, RJ, Brazil
Brahic, Olivier
[2
]
Ortiz, Cristian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010,Cidade Univ, BR-05508090 Sao Paulo, BrazilUniv Fed Rio de Janeiro, Inst Matemat, Av Athos da Silveira Ramos 149, BR-21941909 Rio De Janeiro, RJ, Brazil
Ortiz, Cristian
[3
]
机构:
[1] Univ Fed Rio de Janeiro, Inst Matemat, Av Athos da Silveira Ramos 149, BR-21941909 Rio De Janeiro, RJ, Brazil
[2] Univ Fed Parana, Dept Matemat, BR-81531980 Curitiba, Parana, Brazil
[3] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010,Cidade Univ, BR-05508090 Sao Paulo, Brazil
VB-groupoids are vector bundle objects in the category of Lie groupoids: the total and the base spaces of the vector bundle are Lie groupoids and the vector bundle structure maps are required to define Lie groupoid morphisms. The infinitesimal version of VB-groupoids are VB-algebroids, namely, vector bundle objects in the category of Lie algebroids. Following recent developments in the area, we show that a VB-algebroid is integrable to a VB-groupoid if and only if its base algebroid is integrable and the spherical periods of certain underlying cohomology classes vanish identically. We illustrate our results in concrete examples. Finally, we obtain as a corollary computable obstructions for a 2-term representation up to homotopy of Lie algebroid to arise as the infinitesimal counterpart of a smooth such representation of a Lie groupoid.
机构:
Kyoto Univ, Grad Sch Informat, Dept Appl Math & Phys, Yoshida Honmachi,Sakyo ku, Kyoto 6068501, Japan
Ritsumeikan Univ, Res Org Sci & Technol, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, JapanKyoto Univ, Grad Sch Informat, Dept Appl Math & Phys, Yoshida Honmachi,Sakyo ku, Kyoto 6068501, Japan
Motonaga, Shoya
Yagasaki, Kazuyuki
论文数: 0引用数: 0
h-index: 0
机构:
Kyoto Univ, Grad Sch Informat, Dept Appl Math & Phys, Yoshida Honmachi,Sakyo ku, Kyoto 6068501, JapanKyoto Univ, Grad Sch Informat, Dept Appl Math & Phys, Yoshida Honmachi,Sakyo ku, Kyoto 6068501, Japan