132-avoiding two-stack sortable permutations, Fibonacci numbers, and Pell numbers

被引:9
|
作者
Egge, ES [1 ]
Mansour, T
机构
[1] Gettysburg Coll, Dept Math, Gettysburg, PA 17325 USA
[2] Univ Haifa, Dept Math, IL-31905 Haifa, Israel
关键词
two-stack sortable permutation; restricted permutation; pattern-avoiding permutation; forbidden subsequence; Fibonacci number; Pell number;
D O I
10.1016/j.dam.2003.12.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe the recursive structures of the set of two-stack sortable permutations which avoid 132 and the set of two-stack sortable permutations which contain 132 exactly once. Using these results and standard generating function techniques, we enumerate two-stack sortable permutations which avoid (or contain exactly once) 132 and which avoid (or contain exactly once) an arbitrary permutation tau. In most cases the number of such permutations is given by a simple formula involving Fibonacci or Pell numbers. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:72 / 83
页数:12
相关论文
共 50 条
  • [41] Mersenne numbers which are products of two Pell numbers
    Murat Alan
    Kadriye Simsek Alan
    Boletín de la Sociedad Matemática Mexicana, 2022, 28
  • [42] Mersenne numbers which are products of two Pell numbers
    Alan, Murat
    Alan, Kadriye Simsek
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (02):
  • [43] Fibonacci numbers as sums of two Padovan numbers
    Garcia Lomeli, Ana Cecilia
    Hernandez Hernandez, Santos
    Luca, Florian
    AFRIKA MATEMATIKA, 2022, 33 (01)
  • [44] TRIBONACCI NUMBERS THAT ARE PRODUCTS OF TWO FIBONACCI NUMBERS
    Luca, Florian
    Odjoumani, Japhet
    Togbe, Alain
    FIBONACCI QUARTERLY, 2023, 61 (04): : 298 - 304
  • [45] Fibonacci numbers as sums of two Padovan numbers
    Ana Cecilia García Lomelí
    Santos Hernández Hernández
    Florian Luca
    Afrika Matematika, 2022, 33
  • [46] Self-avoiding walks and fibonacci numbers
    Benjamin, Arthur T.
    FIBONACCI QUARTERLY, 2006, 44 (04): : 330 - 334
  • [47] Repdigits base b as products of two Pell numbers or Pell-Lucas numbers
    Erduvan, Fatih
    Keskin, Refik
    Siar, Zafer
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2021, 27 (03):
  • [48] ON THE x-COORDINATES OF PELL EQUATIONS WHICH ARE FIBONACCI NUMBERS
    Luca, Florian
    Togbe, Alain
    MATHEMATICA SCANDINAVICA, 2018, 122 (01) : 18 - 30
  • [49] Pell and Pell–Lucas Numbers as Product of Two Repdigits
    F. Erduvan
    R. Keskin
    Mathematical Notes, 2022, 112 : 861 - 871
  • [50] The greatest common divisors of generalized Fibonacci and generalized Pell numbers
    Thongkam, Boonyen
    Sailadda, Nutcha
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2018, 24 (01) : 97 - 102