Chladni figures in Andreev billiards

被引:1
|
作者
Libisch, F. [1 ]
Rotter, S. [1 ]
Burgdoerfer, J. [1 ]
机构
[1] Vienna Univ Technol, Inst Theoret Phys, Vienna, Austria
来源
关键词
D O I
10.1140/epjst/e2007-00160-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study wave functions and their nodal patterns in Andreev billiards consisting of a normal-conducting (N) ballistic quantum dot in contact with a superconductor (S). The bound states in such systems feature an electron and a hole component which are coherently coupled by the scattering of electrons into holes at the S-N interface. The wave function "lives" therefore on two sheets of configuration space, each of which features, in general, distinct nodal patterns. By comparing the wave functions and their nodal patterns for holes and electrons detailed tests of semiclassical predictions become possible. One semiclassical theory based on ideal Andreev retroreflection predicts the electron- and hole eigenstates to perfectly mirror each other. We probe the limitations of validity of this model both in terms of the spectral density of the eigenstates and the shape of the wavefunctions in the electron and hole sheet. We identify cases where the Chladni figures for the electrons and holes drastically differ from each other and explain these discrepancies by limitations of the retroreflection picture.
引用
收藏
页码:245 / 254
页数:10
相关论文
共 50 条
  • [21] Density of states of chaotic Andreev billiards
    Kuipers, Jack
    Engl, Thomas
    Berkolaiko, Gregory
    Petitjean, Cyril
    Waltner, Daniel
    Richter, Klaus
    PHYSICAL REVIEW B, 2011, 83 (19):
  • [22] Entanglement distribution statistic in Andreev billiards
    Ramos, J. G. G. S.
    Macedo-Junior, A. F.
    Barbosa, A. L. R.
    EUROPEAN PHYSICAL JOURNAL B, 2017, 90 (11):
  • [23] Semiclassical theory of integrable and rough Andreev billiards
    W. Ihra
    M. Leadbeater
    J.L. Vega
    K. Richter
    The European Physical Journal B - Condensed Matter and Complex Systems, 2001, 21 : 425 - 435
  • [24] Transport moments and Andreev billiards with tunnel barriers
    Kuipers, Jack
    Richter, Klaus
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (05)
  • [25] Density of states and the energy gap in Andreev billiards
    Lodder, A
    Nazarov, YV
    PHYSICAL REVIEW B, 1998, 58 (09): : 5783 - 5788
  • [26] Quantum disorder and quantum chaos in Andreev billiards
    Vavilov, MG
    Larkin, AI
    PHYSICAL REVIEW B, 2003, 67 (11):
  • [27] Nodes and Antinodes in Two-Color Chladni Figures
    Cortel, Adolf
    PHYSICS TEACHER, 2021, 59 (06): : 462 - 463
  • [28] Semiclassical theory of integrable and rough Andreev billiards
    Ihra, W
    Leadbeater, M
    Vega, JL
    Richter, K
    EUROPEAN PHYSICAL JOURNAL B, 2001, 21 (03): : 425 - 435
  • [29] Thermosonic Chladni figures for defect-selective imaging
    Solodov, Igor
    Derusova, Daria
    Rahammer, Markus
    ULTRASONICS, 2015, 60 : 1 - 5
  • [30] Universal spectral statistics of Andreev billiards: Semiclassical approach
    Gnutzmann, S
    Seif, B
    von Oppen, F
    Zirnbauer, MR
    PHYSICAL REVIEW E, 2003, 67 (04):