For any finite group G, and any positive integer n, we construct an association scheme which admits the diagonal group D-n(G) as a group of automorphisms. The rank of the association scheme is the number of partitions of n into at most vertical bar G vertical bar parts, so is p(n) if vertical bar G vertical bar >= n; its parameters depend only on n and vertical bar G vertical bar For n = 2, the association scheme is trivial, while for n = 3 its relations are the Latin square graph associated with the Cayley table of G and its complement. A transitive permutation group G is said to be AS-free if there is no non-trivial association scheme admitting G as a group of automorphisms. A consequence of our construction is that an AS-free group must be either 2-homogeneous or almost simple. We construct another association scheme, finer than the above scheme if n > 3, from the Latin hypercube consisting of n-tuples of elements of G with product the identity.
机构:
Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R ChinaCent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R China
Yang, Jing
Zhang, Xiaoqian
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R ChinaCent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R China
Zhang, Xiaoqian
Feng, Lihua
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R ChinaCent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R China