Multiphoton Sub-Band-Gap Photoconductivity and Critical Transition Temperature in Type-II GaSb Quantum-Dot Intermediate-Band Solar Cells

被引:26
|
作者
Hwang, Jinyoung [1 ]
Lee, Kyusang [1 ]
Teran, Alan [1 ]
Forrest, Stephen [1 ]
Phillips, Jamie D. [1 ]
Martin, Andrew J. [2 ]
Millunchick, Joanna [2 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
来源
PHYSICAL REVIEW APPLIED | 2014年 / 1卷 / 05期
关键词
VOLTAGE;
D O I
10.1103/PhysRevApplied.1.051003
中图分类号
O59 [应用物理学];
学科分类号
摘要
Multiphoton transitions in GaSb/GaAs quantum-dot intermediate-band solar cells are investigated at variable temperature and excitation intensity. A transition temperature is observed that corresponds to the crossover between quantum-dot intraband transitions dominated by thermal escape due to infrared photogeneration. The transition temperature follows an Arrhenius relation with an activation energy of 220 meV that corresponds to the energy barrier observed by holes in the quantum dots. The transition temperature is in the range of 160-225 K for the temperature range studied, significantly higher than observed in previous type-I quantum-dot systems. These results illustrate the potential of type-II structures with deep confinement potentials and strong intraband absorption for future intermediate-band solar cells and quantum devices.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Type-II InP quantum dots in wide-bandgap InGaP host for intermediate-band solar cells
    Tayagaki, Takeshi
    Sugaya, Takeyoshi
    APPLIED PHYSICS LETTERS, 2016, 108 (15)
  • [22] ENHANCED PHOTOVOLTAIC PROPERTIES OF InAs/GaAs QUANTUM-DOT INTERMEDIATE-BAND SOLAR CELLS BY USING CYLINDRICAL QUANTUM DOTS
    Olyaee, S.
    Farhadipour, F.
    Ghahremanirad, E.
    DIGEST JOURNAL OF NANOMATERIALS AND BIOSTRUCTURES, 2018, 13 (01) : 271 - 277
  • [23] Computational Design of the Intermediate-Band Solar Cells Based on the Quantum Dot Superlattices
    Shao, Qinghui
    Balandin, Alexander A.
    Fedoseyev, Alexander I.
    Turowski, Marek
    NANOSCALE PHOTONIC AND CELL TECHNOLOGIES FOR PHOTOVOLTAICS, 2008, 7047
  • [24] Single intermediate-band solar cells of InGaN/InN quantum dot supracrystals
    Zhang, Qiubo
    Wei, Wensheng
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2013, 113 (01): : 75 - 82
  • [25] Single intermediate-band solar cells of InGaN/InN quantum dot supracrystals
    Qiubo Zhang
    Wensheng Wei
    Applied Physics A, 2013, 113 : 75 - 82
  • [26] ENERGY BAND STRUCTURE AND ABSORPTION COEFFICIENTS IN THE QUANTUM-DOT INTERMEDIATE BAND SOLAR CELLS
    Hu, W. G.
    Inoue, T.
    Kojima, O.
    Kita, T.
    35TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, 2010, : 1808 - 1813
  • [27] On the reported experimental evidence for the quasi-Fermi level split in quantum-dot intermediate-band solar cells
    Abouelsaood, Ahmed A.
    Ghannam, Moustafa Y.
    Poortmans, Jef
    PROGRESS IN PHOTOVOLTAICS, 2013, 21 (02): : 209 - 216
  • [28] Multi-stacked GaSb/GaAs type-II quantum nanostructures for application to intermediate band solar cells
    Shoji, Yasushi
    Tamaki, Ryo
    Okada, Yoshitaka
    AIP ADVANCES, 2017, 7 (06):
  • [29] Temperature dependence of quantum-wire intermediate-band solar cells
    Sarollahi, Mirsaeid
    Kunets, Vasyl P.
    Mazur, Yuriy I.
    Mortazavi, Mansour
    Salamo, Gregory J.
    Ware, Morgan
    PHYSICS, SIMULATION, AND PHOTONIC ENGINEERING OF PHOTOVOLTAIC DEVICES VI, 2017, 10099
  • [30] A hot-carrier assisted InAs/AlGaAs quantum-dot intermediate-band solar cell
    Behaghel, B.
    Tamaki, R.
    Chen, H-L
    Rale, P.
    Lombez, L.
    Shoji, Y.
    Delamarre, A.
    Cattoni, A.
    Collin, S.
    Okada, Y.
    Guillemoles, J-F
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2019, 34 (08)