The Community Inversion Framework v1.0: a unified system for atmospheric inversion studies

被引:27
|
作者
Berchet, Antoine [1 ]
Sollum, Espen [2 ]
Thompson, Rona L. [2 ]
Pison, Isabelle [1 ]
Thanwerdas, Joel [1 ]
Broquet, Gregoire [1 ]
Chevallier, Frederic [1 ]
Aalto, Tuula [3 ]
Berchet, Adrien [14 ]
Bergamaschi, Peter [4 ]
Brunner, Dominik [5 ]
Engelen, Richard [6 ]
Fortems-Cheiney, Audrey [1 ]
Gerbig, Christoph [7 ]
Zwaaftink, Christine D. Groot [2 ]
Haussaire, Jean-Matthieu [5 ]
Henne, Stephan [5 ]
Houweling, Sander [8 ]
Karstens, Ute [9 ]
Kutsch, Werner L. [10 ]
Luijkx, Ingrid T. [11 ]
Monteil, Guillaume [9 ]
Palmer, Paul, I [12 ]
van Peet, Jacob C. A. [8 ]
Peters, Wouter [11 ,13 ]
Peylin, Philippe [1 ]
Potier, Elise [1 ]
Roedenbeck, Christian [7 ]
Saunois, Marielle [1 ]
Scholze, Marko [9 ]
Tsuruta, Aki [3 ]
Zhao, Yuanhong [1 ]
机构
[1] UVSQ, Lab Sci Climat & Environm, CEA, CNRS, Gif Sur Yvette, France
[2] Norwegian Inst Air Res NILU, Kjeller, Norway
[3] Finnish Meteorol Inst FMI, Helsinki, Finland
[4] European Commiss Joint Res Ctr, Ispra, Varese, Italy
[5] Swiss Fed Labs Mat Sci & Technol Empa, Dubendorf, Switzerland
[6] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England
[7] Max Planck Inst Biogeochem, Jena, Germany
[8] Vrije Univ Amsterdam, Dept Earth Sci Earth & Climate Cluster, Amsterdam, Netherlands
[9] Lund Univ, Dept Phys Geog & Ecosyst Sci, Lund, Sweden
[10] Integrated Carbon Observat Syst ICOS ERIC, Helsinki, Finland
[11] Wageningen Univ & Res, Meteorol & Air Qual Grp, Wageningen, Netherlands
[12] Univ Edinburgh, Sch Geosci, Edinburgh EH9 3FF, Midlothian, Scotland
[13] Univ Groningen, Ctr Isotope Res, Groningen, Netherlands
[14] Univ Poitiers, Inst Pprime UPR 3346, UPR 3346, CNRS,ENSMA, Bat H2,11 Blvd Marie & Pierre Curie,TSA 51124, F-86073 Poitiers, France
基金
欧盟地平线“2020”;
关键词
PARTICLE DISPERSION MODEL; DATA ASSIMILATION; TRANSPORT MODEL; CO2; EMISSIONS; KALMAN SMOOTHER; SURFACE FLUXES; TECHNICAL NOTE; CARBON-CYCLE; ENSEMBLE; METHANE;
D O I
10.5194/gmd-14-5331-2021
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Atmospheric inversion approaches are expected to play a critical role in future observation-based monitoring systems for surface fluxes of greenhouse gases (GHGs), pollutants and other trace gases. In the past decade, the research community has developed various inversion software, mainly using variational or ensemble Bayesian optimization methods, with various assumptions on uncertainty structures and prior information and with various atmospheric chemistry-transport models. Each of them can assimilate some or all of the available observation streams for its domain area of interest: flask samples, in situ measurements or satellite observations. Although referenced in peer-reviewed publications and usually accessible across the research community, most systems are not at the level of transparency, flexibility and accessibility needed to provide the scientific community and policy makers with a comprehensive and robust view of the uncertainties associated with the inverse estimation of GHG and reactive species fluxes. Furthermore, their development, usually carried out by individual research institutes, may in the future not keep pace with the increasing scientific needs and technical possibilities. We present here the Community Inversion Framework (CIF) to help rationalize development efforts and leverage the strengths of individual inversion systems into a comprehensive framework. The CIF is primarily a programming protocol to allow various inversion bricks to be exchanged among researchers. In practice, the ensemble of bricks makes a flexible, transparent and open-source Python-based tool to estimate the fluxes of various GHGs and reactive species both at the global and regional scales. It will allow for running different atmospheric transport models, different observation streams and different data assimilation approaches. This adaptability will allow for a comprehensive assessment of uncertainty in a fully consistent framework. We present here the main structure and functionalities of the system, and we demonstrate how it operates in a simple academic case.
引用
收藏
页码:5331 / 5354
页数:24
相关论文
共 50 条
  • [21] AerSett v1.0: a simple and straightforward model for the settling speed of big spherical atmospheric aerosols
    Mailler, Sylvain
    Menut, Laurent
    Cholakian, Arineh
    Pennel, Romain
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2023, 16 (03) : 1119 - 1127
  • [22] BARRA v1.0: the Bureau of Meteorology Atmospheric high-resolution Regional Reanalysis for Australia
    Su, Chun-Hsu
    Eizenberg, Nathan
    Steinle, Peter
    Jakob, Dorte
    Fox-Hughes, Paul
    White, Christopher J.
    Rennie, Susan
    Franklin, Charmaine
    Dharssi, Imtiaz
    Zhu, Hongyan
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2019, 12 (05) : 2049 - 2068
  • [23] HEMCO v1.0: a versatile, ESMF-compliant component for calculating emissions in atmospheric models
    Keller, C. A.
    Long, M. S.
    Yantosca, R. M.
    Da Silva, A. M.
    Pawson, S.
    Jacob, D. J.
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2014, 7 (04) : 1409 - 1417
  • [24] Introducing CRYOWRF v1.0: multiscale atmospheric flow simulations with advanced snow cover modelling
    Sharma, Varun
    Gerber, Franziska
    Lehning, Michael
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2023, 16 (02) : 719 - 749
  • [25] Decision Support System version 1.0 (DSS v1.0) for air quality management in Delhi, India
    Govardhan, Gaurav
    Ghude, Sachin D.
    Kumar, Rajesh
    Sharma, Sumit
    Gunwani, Preeti
    Jena, Chinmay
    Yadav, Prafull
    Ingle, Shubhangi
    Debnath, Sreyashi
    Pawar, Pooja
    Acharja, Prodip
    Jat, Rajmal
    Kalita, Gayatry
    Ambulkar, Rupal
    Kulkarni, Santosh
    Kaginalkar, Akshara
    Soni, Vijay K.
    Nanjundiah, Ravi S.
    Rajeevan, Madhavan
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2024, 17 (07) : 2617 - 2640
  • [26] BoundaryLayerDynamics.jl v1.0: a modern codebase for atmospheric boundary-layer simulations
    Schmid, Manuel F.
    Giometto, Marco G.
    Lawrence, Gregory A.
    Parlange, Marc B.
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2024, 17 (01) : 321 - 333
  • [27] Reporting to Improve Reproducibility and Facilitate Validity Assessment for Healthcare Database Studies V1.0
    Wang, Shirley V.
    Schneeweiss, Sebastian
    Berger, Marc L.
    Brown, Jeffrey
    de Vries, Frank
    Douglas, Ian
    Gagne, Joshua J.
    Gini, Rosa
    Klungel, Olaf
    Mullins, C. Daniel
    Nguyen, Michael D.
    Rassen, Jeremy A.
    Smeeth, Liam
    Sturkenboom, Miriam
    VALUE IN HEALTH, 2017, 20 (08) : 1009 - 1022
  • [28] Reporting to Improve Reproducibility and Facilitate Validity Assessment for Healthcare Database Studies V1.0
    Wang, Shirley V.
    Schneeweiss, Sebastian
    Berger, Marc L.
    Brown, Jeffrey
    de Vries, Frank
    Douglas, Ian
    Gagne, Joshua J.
    Gini, Rosa
    Klungel, Olaf
    Mullins, C. Daniel
    Nguyen, Michael D.
    Rassen, Jeremy A.
    Smeeth, Liam
    Sturkenboom, Miriam
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2017, 26 (09) : 1018 - 1032
  • [29] MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices
    Li, Dinghua
    Luo, Ruibang
    Liu, Chi-Man
    Leung, Chi-Ming
    Ting, Hing-Fung
    Sadakane, Kunihiko
    Yamashita, Hiroshi
    Lam, Tak-Wah
    METHODS, 2016, 102 : 3 - 11
  • [30] Description and implementation of a MiXed Layer model (MXL, v1.0) for the dynamics of the atmospheric boundary layer in the Modular Earth Submodel System (MESSy)
    Janssen, R. H. H.
    Pozzer, A.
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2015, 8 (03) : 453 - 471