DEEP SELF-SUPERVISED LEARNING FOR FEW-SHOT HYPERSPECTRAL IMAGE CLASSIFICATION

被引:16
|
作者
Li, Yu [2 ]
Zhang, Lei [2 ]
Wei, Wei [1 ,2 ]
Zhang, Yanning [2 ]
机构
[1] Northwestern Polytech Univ Shenzhen, Res & Dev Inst, Shenzhen 518057, Peoples R China
[2] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
few-shot; deep learning; HSI classification; self-supervised task;
D O I
10.1109/IGARSS39084.2020.9323305
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite the success of deep learning based methods for hyper-spectral imagery (HSI) classification, they demand amounts of labeled samples for training whereas the labeled samples in lots of applications are always insufficient due to the expensive manual annotation cost. To address this problem, we propose a two-branch deep learning based method for fewshot HSI classification, where two branches separately accomplish HSI classification in a cube-wise level and a cubepair level. With a shared feature extractor sub-network, the self-supervised knowledge contained in the cube-pair branch provides an effective way to regularize the original few-shot HSI classification branch (i.e., cube-wise branch) with limited labeled samples, which thus improves the performance of HSI classification. The superiority of the proposed method on few-shot HSI classification is demonstrated experimentally on two HSI benchmark datasets.
引用
收藏
页码:501 / 504
页数:4
相关论文
共 50 条
  • [41] SELF-SUPERVISED FEW-SHOT LEARNING FOR ISCHEMIC STROKE LESION SEGMENTATION
    Tomasetti, Luca
    Hansen, Stine
    Khanmohammadi, Mahdieh
    Engan, Kjersti
    Hollesli, Liv Jorunn
    Kurz, Kathinka Daehli
    Kampffmeyer, Michael
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [42] Few-Shot Class Incremental Learning Leveraging Self-Supervised Features
    Ahmad, Touqeer
    Dhamija, Akshay Raj
    Cruz, Steve
    Rabinowitz, Ryan
    Li, Chunchun
    Jafarzadeh, Mohsen
    Boult, Terrance E.
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 3899 - 3909
  • [43] Self-Supervised and Few-Shot Contrastive Learning Frameworks for Text Clustering
    Shi, Haoxiang
    Sakai, Tetsuya
    IEEE ACCESS, 2023, 11 : 84134 - 84143
  • [44] Unsupervised Few-Shot Feature Learning via Self-Supervised Training
    Ji, Zilong
    Zou, Xiaolong
    Huang, Tiejun
    Wu, Si
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2020, 14
  • [45] TASK-AWARE FEW-SHOT VISUAL CLASSIFICATION WITH IMPROVED SELF-SUPERVISED METRIC LEARNING
    Cheng, Chia-Sheng
    Shao, Hao-Chiang
    Lin, Chia-Wen
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3531 - 3535
  • [46] Domain-Adaptive Few-Shot Learning for Hyperspectral Image Classification
    Zhang, Andi
    Liu, Fang
    Liu, Jia
    Tang, Xu
    Gao, Wenfei
    Li, Donghui
    Xiao, Liang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [47] Self-supervised pairwise-sample resistance model for few-shot classification
    Weigang Li
    Lu Xie
    Ping Gan
    Yuntao Zhao
    Applied Intelligence, 2023, 53 : 20661 - 20674
  • [48] Few-Shot Learning With Mutual Information Enhancement for Hyperspectral Image Classification
    Zhang, Qiaoli
    Peng, Jiangtao
    Sun, Weiwei
    Liu, Quanyong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [49] Self-supervised pairwise-sample resistance model for few-shot classification
    Li, Weigang
    Xie, Lu
    Gan, Ping
    Zhao, Yuntao
    APPLIED INTELLIGENCE, 2023, 53 (18) : 20661 - 20674
  • [50] FEW-SHOT HYPERSPECTRAL IMAGE CLASSIFICATION THROUGH MULTITASK TRANSFER LEARNING
    Qu, Ying
    Baghbaderani, Razieh Kaviani
    Qi, Hairong
    2019 10TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING - EVOLUTION IN REMOTE SENSING (WHISPERS), 2019,