A Case of Self-Organization in Highly Emissive EuIII Ionic Liquids

被引:9
|
作者
Leal, Joao P. [1 ,2 ]
Outis, Mani [3 ]
Casimiro, Maria H. [1 ]
Ferreira, Luis M. [1 ]
Fernandes, Fabio [4 ,5 ,6 ]
Monteiro, Bernardo [1 ]
Laia, Cesar A. T. [3 ]
Pereira, Claudia C. L. [3 ]
机构
[1] Univ Lisbon, Inst Super Tecn, C2TN, Campus Tecnol & Nucl,Estrada Nacl 10,Ao Km 139,7, P-2695066 Bobadela, Portugal
[2] Univ Lisbon, Ctr Quim & Bioquim, Fac Ciencias, P-1749016 Lisbon, Portugal
[3] Univ Nova Lisboa, Dept Quim, LAQV REQUIMTE, P-2829516 Monte De Caparica, Portugal
[4] Univ Lisbon, Ctr Quim Fis Mol, Inst Super Tecn, Lisbon, Portugal
[5] Univ Lisbon, Inst Nanociencia & Nanotecnol, Inst Super Tecn, Lisbon, Portugal
[6] Univ Nova Lisboa, UCIBIO, REQUIMTE, Dept Quim,FCT, Caparica, Portugal
关键词
Photochemistry; Ionic liquids; Europium; Thermochemistry; Trihexyltetradecylphosphonium; CRYSTALS; EUROPIUM; COMPLEX;
D O I
10.1002/ejic.201700649
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Intrinsic photoluminescent ionic liquids based on europium(III) tetrakis(beta-diketonate) complexes with a tetraalkyl-phosphonium as the counterion were synthesized. Two are room temperature ionic liquids; [P-6,P-6,P-6,P-14][Eu(fod)(4)] (1) {fod is 1,1,1,2,2,3,3-heptafluoro-7,7-dimethyloctane-4,6-dionate} and [P-6,P-6,P-6,P-14][Eu(fod)(3)(dbm)] (2) {dbm is dibenzoylmethanate}, while calorimetric measurements showed a melting point at 415 K for [P-6,P-6,P-6,P-14][Eu(dbm)(4)] (3). The luminescence quantum yields determined for 1, 2, and 3 are 34, 59 %, and 64 %, respectively. The photoluminescence and thermochemical properties of the complexes were investigated in detail and the influence of the long chain tetraalkylphosphonium counterion, together with the aromatic diketone ligand, on the unusual thermal behavior of 2 is discussed.
引用
收藏
页码:3429 / 3434
页数:6
相关论文
共 50 条
  • [41] Self-organization and the city
    Turner, A
    JASSS-THE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION, 2002, 5 (02):
  • [42] Self-organization of power at will
    Tzafestas, Elpida
    BEHAVIORAL AND BRAIN SCIENCES, 2020, 44
  • [43] GEOCHEMICAL SELF-ORGANIZATION
    ORTOLEVA, PJ
    CHEMICAL GEOLOGY, 1988, 70 (1-2) : 80 - 80
  • [44] SELF-ORGANIZATION IN ROTTERDAM
    ZEISEL, J
    GODSCHALK, D
    PLANNING AND ADMINISTRATION, 1981, 8 (02): : 111 - 113
  • [45] Graphenes and their self-organization
    Muellen, Klaus
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [46] Self-organization with traveling waves: A case for a convective torus
    Martincigh, BS
    Chinake, CR
    Howes, T
    Simoyi, RH
    PHYSICAL REVIEW E, 1997, 55 (06): : 7299 - 7303
  • [47] Note on a classical case of self-organization: The Persian Immortals
    Yuste, Santos Bravo
    AMERICAN JOURNAL OF PHYSICS, 2025, 93 (03) : 258 - 259
  • [48] Probing the relationship of cations-graphene interaction strength with self-organization behaviors of the anions at the interface between graphene and ionic liquids
    Hu, Guangliang
    Anaredy, Radhika S.
    Alamri, Mohammed
    Liu, Qingfeng
    Pandey, Gaind P.
    Ma, Chunrui
    Liu, Ming
    Shaw, Scott K.
    Li, Jun
    Wu, Judy Z.
    APPLIED SURFACE SCIENCE, 2019, 479 : 576 - 581
  • [49] Self-organization in Brains
    Cariani, Peter
    CONSTRUCTIVIST FOUNDATIONS, 2013, 9 (01): : 35 - 38
  • [50] Evolution and self-organization
    Weise, P
    JOURNAL OF INSTITUTIONAL AND THEORETICAL ECONOMICS-ZEITSCHRIFT FUR DIE GESAMTE STAATSWISSENSCHAFT, 1996, 152 (04): : 716 - 722