Secure multi-party computation made simple

被引:0
|
作者
Maurer, U [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Comp Sci, CH-8092 Zurich, Switzerland
来源
关键词
secure multi-party computation; secret-sharing; verifiable secret-sharing; adversary structures;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A simple approach to secure multi-party computation is presented. Unlike previous approaches, it is based on essentially no mathematical structure (like bivariate polynomials) or sophisticated sub-protocols (like zero-knowledge proofs). It naturally yields protocols secure for mixed (active and passive) corruption and general (as opposed to threshold) adversary structures, confirming the previous tight bounds in a simpler formulation and with simpler proofs. Due to their simplicity, the described protocols are well-suited for didactic purposes, which is a main goal of this paper.
引用
收藏
页码:14 / 28
页数:15
相关论文
共 50 条
  • [21] MULTI-PARTY SECURE COMPUTATION OF MULTI-VARIABLE POLYNOMIALS
    Kosolapov, Yu. V.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2023, 16 (01): : 81 - 95
  • [22] Minimal Complete Primitives for Secure Multi-Party Computation
    Matthias Fitzi
    Juan A. Garay
    Ueli Maurer
    Rafail Ostrovsky
    Journal of Cryptology, 2005, 18 : 37 - 61
  • [23] Rational protocol of quantum secure multi-party computation
    Dou, Zhao
    Xu, Gang
    Chen, Xiu-Bo
    Niu, Xin-Xin
    Yang, Yi-Xian
    QUANTUM INFORMATION PROCESSING, 2018, 17 (08)
  • [24] Round-Optimal Secure Multi-party Computation
    Shai Halevi
    Carmit Hazay
    Antigoni Polychroniadou
    Muthuramakrishnan Venkitasubramaniam
    Journal of Cryptology, 2021, 34
  • [25] Secure multi-party computation protocol for sequencing problem
    ChunMing Tang
    GuiHua Shi
    ZhengAn Yao
    Science China Information Sciences, 2011, 54 : 1654 - 1662
  • [26] Rational protocol of quantum secure multi-party computation
    Zhao Dou
    Gang Xu
    Xiu-Bo Chen
    Xin-Xin Niu
    Yi-Xian Yang
    Quantum Information Processing, 2018, 17
  • [27] Application of Secure Multi-party Computation in Linear Programming
    Fu Zu-feng
    Wang Hai-ying
    Wu Yong-wu
    2014 IEEE 7TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC), 2014, : 244 - 248
  • [28] Secure Multi-party Quantum Computation with a Dishonest Majority
    Dulek, Yfke
    Grilo, Alex B.
    Jeffery, Stacey
    Majenz, Christian
    Schaffner, Christian
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2020, PT III, 2020, 12107 : 729 - 758
  • [29] Secure Multi-Party Computation for Machine Learning: A Survey
    Zhou, Ian
    Tofigh, Farzad
    Piccardi, Massimo
    Abolhasan, Mehran
    Franklin, Daniel
    Lipman, Justin
    IEEE ACCESS, 2024, 12 : 53881 - 53899
  • [30] Secure multi-party computation protocol for sorting problem
    School of Computer Science, Shaanxi Normal University, Xi'an 710062, China
    不详
    Hsi An Chiao Tung Ta Hsueh, 2008, 2 (231-233+255): : 231 - 233