Activated MoS2 by Constructing Single Atomic Cation Vacancies for Accelerated Hydrogen Evolution Reaction

被引:24
|
作者
Ge, Jingmin [1 ]
Chen, Yuxin [1 ]
Zhao, Yufei [1 ]
Wang, Yiping [1 ]
Zhang, Fazhi [1 ]
Lei, Xiaodong [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
hydrogen evolution reaction; single atomic cation vacancies; metal phosphide; MoS2; nickel-cobalt Prussian blue analogues; ENHANCED ELECTROCATALYTIC ACTIVITY; BIFUNCTIONAL ELECTROCATALYSTS; BIMETAL PHOSPHIDE; EFFICIENT; NANOSHEETS; ALKALINE; INTERFACE; HETEROSTRUCTURE; DESIGN; NANOBOXES;
D O I
10.1021/acsami.2c06708
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Regulating the electronic structure of MoS2 by constructing cationic vacancies is an effective method to activate and improve its intrinsic properties. Herein, we synthesize the MoS2-based composite with abundant single atomic Mo cation vacancies through uniformly loading nickel-cobalt-Prussian blue analogues (NiCoPBA) (NiCoPBA-MoS2-V-Mo) by immersing a single Ni atom-decorated MoS2 (Ni-MoS2) into K-3[Co(CN)(6)] solution. Subsequently, NiCoP-MoS2-V-Mo with improved conductivity is obtained by phosphating the composite as a high-efficiency hydrogen evolution reaction (HER) catalyst. Experiments and theoretical calculations indicate that the electrons of NiCoP are spontaneously transferred to the substrate MoS2-V-Mo nanosheets in NiCoP-MoS2-V-Mo, and the moderately oxidized NiCoP is beneficial to the adsorption of OH*. Meanwhile, the mono-atomic Mo cation vacancies of the catalyst modulate the electronic structure of S, optimizing the adsorption of hydrogen in the reaction process. Therefore, NiCoP-MoS2-V-Mo has enhanced chemical adsorption for H* (on MoS2-V-Mo) and OH*(on NiCoP), expediting the water-splitting step and HER catalysis, and benefiting from the regulation of the electronic structure induced by the construction of metallic Mo vacancies in MoS2, the as-prepared catalyst displays an overpotential of only 67 mV at 10 mA cm(-2) with long-term stability (no current decay over 20 h). This work affords not only a kind of efficient HER catalysts but also a new valuable route for developing inexpensive and high-performance catalysts with single atomic cation vacancies.
引用
收藏
页码:26846 / 26857
页数:12
相关论文
共 50 条
  • [31] Tuning interlayer spacing of MoS2 for enhanced hydrogen evolution reaction
    Guo, Shaohui
    Zhang, Yuanyuan
    Tang, Songwei
    Wang, Bilin
    Wang, Yijin
    Song, Yaru
    Xin, Xu
    Zhang, Youzi
    Li, Xuanhua
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 864
  • [32] Unveiling Active Sites for the Hydrogen Evolution Reaction on Monolayer MoS2
    Zhang, Jing
    Wu, Jingjie
    Guo, Hua
    Chen, Weibing
    Yuan, Jiangtan
    Martinez, Ulises
    Gupta, Gautam
    Mohite, Aditya
    Ajayan, Pulickel M.
    Lou, Jun
    ADVANCED MATERIALS, 2017, 29 (42)
  • [33] Rational design of freestanding MoS2 monolayers for hydrogen evolution reaction
    Hai, Xiao
    Zhou, Wei
    Wang, Shengyao
    Pang, Hong
    Chang, Kun
    Ichihara, Fumihiko
    Ye, Jinhua
    NANO ENERGY, 2017, 39 : 409 - 417
  • [34] Cobaloxime anchored MoS2 nanosheets as electrocatalysts for the hydrogen evolution reaction
    Cai, Ming
    Zhang, Fan
    Zhang, Chao
    Lu, Chenbao
    He, Yafei
    Qu, Yang
    Tian, Hao
    Feng, Xinliang
    Zhuang, Xiaodong
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (01) : 138 - 144
  • [35] Nanocatalysis MoS2/rGO: An Efficient Electrocatalyst for the Hydrogen Evolution Reaction
    Guzman-Olivos, Fernando
    Hernandez-Saravia, Lucas Patricio
    Nelson, Ronald
    Perez, Maria de los Angeles
    Villalobos, Francisco
    MOLECULES, 2024, 29 (02):
  • [36] Field Effect Enhanced Hydrogen Evolution Reaction of MoS2 Nanosheets
    Wang, Junhui
    Yan, Mengyu
    Zhao, Kangning
    Liao, Xiaobin
    Wang, Peiyao
    Pan, Xuelei
    Yang, Wei
    Mai, Liqiang
    ADVANCED MATERIALS, 2017, 29 (07)
  • [37] Magnetic Enhancement for Hydrogen Evolution Reaction on Ferromagnetic MoS2 Catalyst
    Zhou, Wenda
    Chen, Mingyue
    Guo, Manman
    Hong, Aijun
    Yu, Ting
    Luo, Xingfang
    Yuan, Cailei
    Lei, Wen
    Wang, Shouguo
    NANO LETTERS, 2020, 20 (04) : 2923 - 2930
  • [38] Effect of oxygen doping on the hydrogen evolution reaction in MoS2 monolayer
    Shi, Wenwu
    Wang, Zhiguo
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2018, 82 : 163 - 168
  • [39] Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction
    Ye, Gonglan
    Gong, Yongji
    Lin, Junhao
    Li, Bo
    He, Yongmin
    Pantelides, Sokrates T.
    Zhou, Wu
    Vajtai, Robert
    Ajayan, Pulickel M.
    NANO LETTERS, 2016, 16 (02) : 1097 - 1103
  • [40] Enhanced Hydrogen Evolution Reaction in Surface Functionalized MoS2 Monolayers
    Pak, Sangyeon
    Lim, Jungmoon
    Hong, John
    Cha, SeungNam
    CATALYSTS, 2021, 11 (01) : 1 - 9